Posts Tagged «Sea ice»

Schweiger, A.J., K.R. Wood, and J. Zhang, 2019: Arctic Sea Ice Volume Variability over 1901–2010: A Model-Based Reconstruction. J. of Climate, 32, 4731-4752,

We compare the observations of arctic sea ice thickness estimates from satellites with in situ observations – collected by submarine cruises and moorings under the sea ice, by direct measurement during field camps, by electromagnetic instruments flown over the sea ice, and by buoys drifting with the sea ice – to provide a careful assessment of our capabilities to monitor the thickness of sea ice.

Project investigators aim to improve upon the existing seasonal ensemble forecasting system and use the system to predict sea ice conditions in the arctic and subarctic seas with lead times ranging from two weeks to three seasons.

Steele, M., J. Zhang, D.A. Rothrock, and H. Stern: The force balance of sea ice in a numerical model of the Arctic Ocean, J. Geophys. Res., 102, 21061-21079, 1997.

Steele, M., S. Dickinson, J. Zhang, and R.W. Lindsay, Seasonal ice loss in the Beaufort Sea: Toward synchrony and prediction, J. Geophy. Res., 120, 1118-1132, doi: 10.1002/2014JC010247, 2015.

Stern, H., R. Lindsay, C. Bitz, and P. Hezel, 2008, What is the Trajectory of Arctic Sea Ice?, in Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophysical Monograph Series 180, American Geophysical Union, doi:10.1029/180GM03.

Stern, H., A. Schweiger, J. Zhang, and M. Steele, On reconciling disparate studies of the sea-ice floe size distribution, Elementa, 6: 49. DOI:, 2018.

Stern, H.L., D.A. Rothrock, and R. Kwok, 1995, Open water production in Arctic sea ice: Satellite measurements and model parameterizations, J. Geophys. Res., vol. 100, C10, pp. 20601-20612.

Stern, H.L., and R.E. Moritz. Sea ice kinematics and surface properties from RADARSAT synthetic aperture radar during the SHEBA drift, J. Geophys. Res., 107(C10), doi:10.1029/2000JC000472, 2002

Stern, H.L., and R.W. Lindsay,’ Spatial scaling of Arctic sea ice deformation’, J. Geophys. Res., 114, doi:10.1029/2009JC005380, 2009.

Stroeve, J., A. Barrett, M. Serreze, and A. Schweiger (2014), Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness, Cryosphere, 8(5), 1839-1854.

A new modeling study conducted by Dr. Jinlun Zhang to be published in the Journal of Climate shows that stronger polar winds lead to an increase in Antarctic sea ice, even in a warming climate.

This project will investigate, through modeling and data assimilation, the historical evolution of the Antarctic sea ice–ocean system from 1979 to the present to enhance our understanding of the large-scale changes that have occurred in the sea ice and the upper ocean in response to changes in atmospheric circulation.

Wensnahan, M., D. A. Rothrock and P. Hezel, “New arctic sea ice draft data from submarines”, EOS, 88(5), 55-6, 20

Yang, Q., Mu, L., Wu, X., Liu, J., Zheng, F., Zhang, J., Li, C., 2019. Improving Arctic sea ice seasonal outlook by ensemble prediction using an ice-ocean model. Atmospheric Research, 227, pp. 14-23.

Yu, Y., G.A. Maykut, and D.A. Rothrock, “Changes in the thickness distribution of Arctic sea ice between 1958-1970 and 1993-1997“, J. Geophys. Res., P109, 10.1029/2003JC001982, 2004.

Zhang, J., A. Schweiger, M. Steele, and H. Stern, Sea ice floe size distribution in the marginal ice zone: Theory and numerical experiments, J. Geophys. Res. Oceans, 120, doi:10.1002/2015JC010770, 2015

Zhang J., M. Steele, R. Lindsay, A. Schweiger, J. Morison, “Ensemble 1-Year predictions of Arctic sea ice for the spring and summer of 2008”, Journal of Polar Science,submitted 2008.

Zhang, J, R.W Lindsay, M. Steele and A. Schweiger, “What Drove the Dramatic Retreat of Arctic Sea Ice During Summer 2007?”, Geophys. Res. Lett., doi:10.1029/2008GL034005.

Zhang, J., A. Schweiger, M. Webster, B. Light, M. Steele, C. Ashjian, R. Campbell, and Y. Spitz, Melt pond conditions on declining Arctic sea ice over 1979-2016: Model development, validation, and results, J. Geophys. Res. Oceans, 123,, 2018.

Zhang, J., Spitz, Y. H., Steele, M., Ashjian, C., Campbell, R., & Schweiger, A. (2020). Biophysical consequences of a relaxing Beaufort Gyre. Geophysical Research Letters, n/a(n/a). doi:10.1029/2019gl085990

Zhang, J.L., M. Steele, D.A. Rothrock, and R.W. Lindsay, “Increasing exchanges at Greenland-Scotland Ridge and their links with the North Atlantic Oscillation and Arctic Sea Ice”, Geophys. Res. Lett., 31, L09307, 10.1029/2003GL019304, 2004.