- Blanchard-Wrigglesworth, E., Webster, M., Boisvert, L., Parker, C., & C. Horvat (in press), Record low SLP Arctic cyclone of January 2022: characteristics, impacts, and predictability, J. Geophys. Res. Atmos.
- Parker, C., Mooney, P., Webster, M., & L. Boisvert (in press), The influence of climate change on Arctic cyclones: recent and future, Nat. Comms.
- Webster, M., & S.G. Warren (2022), Regional geoengineering using tiny glass bubbles would accelerate the loss of Arctic sea ice, Earth’s Future, 10, e2022EF002815, doi:10.1029/2022EF002815
- Light, B., Smith, M.M., Perovich, D.K., Webster, M., Holland, M., Linhardt, F., Raphael, I.A., Clemens-Sewall, D., MacFarlane, A., Anhaus, P., & D. Bailey (2022), Arctic sea ice albedo: spectral composition, spatial heterogeneity, and temporal evolution observed during the MOSAiC drift, Elementa: Sci. of the Anthro., 10(1) doi:10.1525/elementa.2021.000103.
- Smith, M.M., Albedyll, L.v., Raphael, I., Lange, B., Matero, I., Salganik, E., Webster, M., Granskog, M.A., Fong, A., Lei, R., & B. Light (2022), Quantifying false bottoms and under-ice meltwater layers beneath Arctic summer sea ice with fine-scale observations, Elementa: Sci. of the Anthro. 10(1) doi:10.1525/elementa.2021.000116.
- Huang, Y., Taylor, P.C., Rose, F.G., Rutan, D.A., Shupe, M.A., Webster M., & M. Smith (2022), Towards a more realistic representation of surface albedo in NASA CERES satellite products: a comparison with the MOSAiC field campaign, Elementa: Sci. of the Anthro., 10, doi:10.1525/elementa.2022.00013.
- Webster, M., Holland, M., Wright, N.C., Hendricks, S., Hutter, N., Itkin, P., Light, B., Linhardt, F., Perovich, D.K., Raphael, I.A., Smith, M.M., Albedyll, L.v., & J. Zhang (2022), Spatiotemporal evolution of melt ponds on Arctic sea ice: MOSAiC observations and model results, Elementa: Sci. of the Anthro. 10, doi:10.1525/elementa.2021.000072.
- Albedyll, L.v., Hendricks, S., Grodofzig, R., Krumpen, T., Arndt, S., Belter, H.J., Birnbaum, G., Cheng, B., Hoppmann, M., Hutchings, J., Itkin, P., Lei, R., Nicolaus, M., Ricker, R., Rohde, J., Suhrhoff, M., Timofeeva, A., Watkins, D., Webster, M., & C. Haas (2022), Thermodynamic and dynamic contributions to seasonal Arctic sea ice thickness distributions from airborne observations, Elementa: Sci. of the Anthro. 10, doi:10.1525/elementa.2021.00074.
- Webster, M., Rigor, I., & N. Wright (2022), Observing Arctic sea ice, Oceanography. 35, doi:10.5670/oceanog.2022.115.
- Kay, J.E., DeRepentigny, P., Holland, M.M., Bailey, D.A., DuVivier, A.K., Blanchard-Wrigglesworth, E., Deser, C., Jahn, A., Singh, H.A., Smith, M.M., Webster, M., Edwards, J., Lee, S., Rodgers, K., & N.A. Rosenbloom (2022), Less surface sea ice melt in the CESM2 improves Arctic sea ice simulation with minimal non-polar climate impacts, J. of Advances in Modeling Earth Systems, 14, doi:10.1029/2021MS002679.
- Nicolaus, M., et al. (2022), Overview of the MOSAiC expedition – snow and sea ice, Elementa: Sci. of the Anthro. 10, doi:10.1525/elementa.2021.000046.
- Holland, M.M., Clemens-Sewall, D., Landrum, D., Light, B., Perovich, D., Polashenski, C., Smith, M., & M. Webster (2021), The influence of snow on sea ice as assessed from simulations of CESM2, The Cryosphere, doi:10.5194/tc-2021-174.
- Perovich, D., Smith, M., Light B., & M. Webster (2021), Meltwater sources and sinks for multiyear Arctic sea ice in summer, The Cryosphere. doi:10.5194/tc-2021-114.
- Belter, J., Krumpen, T., von Albedyll, L., Alekseeva, T., Frolov, S., Hendricks, S., Herber, A., Polyakov, I., Raphael, I., Ricker, R., Serovetnikov, S., Webster, M., & C. Haas (2021), Interannual variability in Transpolar Drift summer sea ice thickness and potential impact of Atlantification, The Cryosphere. doi:10.5194/tc-15-2575-2021.
- Webster, M., DuVivier, A.K., Holland, M.M. & D.A. Bailey (2021), Snow on Arctic sea ice in a warming climate as simulated in CESM, J. Geophys. Res. Oceans. 125, doi: 10.1029/2020JC016308.
- Boisvert, L., Webster, M., Petty, A., Markus, T., Cullather, R., & D. Bromwich (2020), Intercomparison of precipitation estimates over the Southern Ocean from atmospheric reanalyses, J. Clim., doi:10.1175/JCLI-D-20-0044.1
- Kwok, R., Cunningham, G., Kacimi, S., Webster, M., Kurtz, N., & A. Petty (2020), Decay of the snow cover over Arctic sea ice from ICESat-2 acquisitions during summer melt in 2019, Geophys. Res. Lett. doi:10.1029/2020GL088209.
- Kwok, R., Kacimi, S., Webster, M., Markus, T., Kurtz, N., & A. Petty (2020), Snow depth and sea ice thickness from ICESat-2 and CryoSat-2 freeboards: A first examination, J. Geophys. Res. Oceans. doi:10.1029/2019JC016008.
- DuVivier, A., DeRepentigny, P., Holland, M., Webster, M., Kay, J., & D. Perovich (2020), Going with the floe: tracking CESM Large Ensemble sea ice in the Arctic provides context for ship-based observations, The Cryosphere, doi:10.5194/tc-14-1259-2020.
- Webster, M., Parker, C., Boisvert, L., & R. Kwok (2019), The role of cyclones in snow accumulation on Arctic sea ice, Nat. Comms. 10, 5285, doi:10.1038/s41467-019-13299-8.
- Zhang, J., Schweiger, A., Webster, M., Light, B., Steele, M., Ashjian, C., Campbell, R., & Y. Spitz (2018), Melt pond conditions on declining Arctic sea ice over 1979–2016: Model development, validation, and results, J. Geophys. Res., Oceans., 123 (11), doi:10.1029/2018JC014298.
- Petty, A., Webster, M., Boisvert, L., & T. Markus (2018), The NASA Eulerian Snow on Sea Ice Model (NESOSIM) v1.0: initial model development and analysis, Geosci. Model Dev. 11, 4577-4602.
- Webster, M., Gerland, S., Holland, M., Hunke, E., Kwok, R., Lecomte, O., Massom, R., Perovich, D., & M. Sturm (2018) Snow in the changing sea-ice systems, Nat. Clim. Change, 8, doi:10.1038/s41558-018-0286-7.
- Boisvert, L., Webster, M., Petty, A., Markus, T., Bromwich, D., & R. Cullather (2018), Intercomparison of precipitation estimates over the Arctic Ocean and its peripheral seas from reanalyses, J. Clim., 31(20), 8441–8462, doi:10.1175/JCLI-D-18-0125.1.
- Blanchard-Wrigglesworth, E., Webster, M., Farrell, S. L., & C. Bitz (2018), Reconstruction of snow on Arctic sea ice, J. Geophys. Res., 123 (5): 3588-3602, doi:10.1002/2017jcc013364.
- Contributing author of the Snow, Water, Ice and Permafrost in the Arctic (SWIPA) assessment, Ch. 6.2: “Changes in sea ice thermodynamics, age and dynamic processes” (2017).
- Kwok, R., Kurtz, N. T., Brucker, L., Ivanoff, A., Newman, T., Farrell, S. L., King, J., Howell, S., Webster, M., Paden, J., Leuschen, C., MacGregor, J.A., Richter-Menge, J., Harbeck, J., & M. Tschudi (2017). Intercomparison of snow depth retrievals over Arctic sea ice from radar data acquired by Operation IceBridge. The Cryosphere, 11(6), 2571–2593. doi:10.5194/tc-11-2571-2017.
- Light, B., Perovich, D.K., Webster, M., Polashenski, C.M., & R. Dadic (2015), Optical properties of melting first-year Arctic sea ice, J. Geophys. Res. Oceans, doi:10.1029/2015JC011163.
- Webster, M., Rigor, I.G., Perovich, D.K., Richter-Menge, J.A., Polashenski, C.M., & B. Light (2015), Seasonal evolution of melt ponds on Arctic sea ice, J. Geophys. Res. Oceans, doi:10.1029/2015JC011030.
- Polashenski, C.M., Perovich, D.K., Frey, K.E., Cooper, L.W., Logvinova, C.I., Dadic, R., Light, B., Kelly, H.P., Trusel, L.D., & M. Webster (2015), Physical and morphological properties of sea ice in the Chukchi and Beaufort Seas during the 2010 and 2011 NASA ICESCAPE missions, Deep Sea Res. Part II: Topical Studies in Ocean., doi:10.1016/j.dsr2.2015.04.006.
- Webster, M., Rigor, I.G., Nghiem, S.V., Kurtz, N.T., Farrell, S.L., Perovich, D.K., & M. Sturm (2014), Interdecadal changes in snow depth on Arctic sea ice, J. Geophys. Res. Oceans, 119, 5395–5406, doi:10.1002/2014JC009985.
Jaquenoud, M., and 9 others including W.T. Elam, “In-situ X-ray fluorescence to investigate iodide diffusion in opalinus clay: Demonstration of a novel experimental approach,” Chemosphere, 269, doi:10.1016/j.chemosphere.2020.128674, 2021.
During the last two decades, the Mont Terri rock laboratory has hosted an extensive experimental research campaign focusing on improving our understanding of radionuclide transport within Opalinus Clay. The latest diffusion experiment, the Diffusion and Retention experiment B (DR-B) has been designed based on an entirely different concept compared to all predecessor experiments. With its novel experimental methodology, which uses in-situ X-ray fluorescence (XRF) to monitor the progress of an iodide plume within the Opalinus Clay, this experiment enables large-scale and long-term data acquisition and provides an alternative method for the validation of previously acquired radionuclide transport parameters.
After briefly presenting conventional experimental methodologies used for field diffusion experiments and highlighting their limitations, this paper will focus on the pioneer experimental methodology developed for the DR-B experiment and give a preview of the results it has delivered thus far.
Avoiding slush for hot-point drilling of glacier boreholes
Hill’s, B.H., D.P. Winebrenner, W.T. Elam, and P.M.S. Kintner, “Avoiding slush for hot-point drilling of glacier boreholes,” Ann. Glaciol., 62, 166-170, doi:10.1017/a0g.2020.70, 2021.
Water-filled boreholes in cold ice refreeze in hours to days, and prior attempts to keep them open with antifreeze resulted in a plug of slush effectively freezing the hole even faster. Thus, antifreeze as a method to stabilize hot-water boreholes has largely been abandoned. In the hot-point drilling case, no external water is added to the hole during drilling, so earlier antifreeze injection is possible while the drill continues melting downward. Here, we use a cylindrical Stefan model to explore slush formation within the parameter space representative of hot-point drilling. We find that earlier injection timing creates an opportunity to avoid slush entirely by injecting sufficient antifreeze to dissolve the hole past the drilled radius. As in the case of hot-water drilling, the alternative is to force mixing in the hole after antifreeze injection to ensure that ice refreezes onto the borehole wall instead of within the solution as slush.
Regehr, E. V., M. C. R., Andrew Von Duyke, Ryan R Wilson, Lori Polasek, Karyn D Rode, Nathan J Hostetter, Sarah J
Converse. 2021. Demographic risk assessment for a harvested species threatened by climate change: polar bears in the
Chukchi Sea. Ecological Applications 0000:0000.Regehr, E. V., M. Dyck, S. Iverson, D. S. Lee, N. J. Lunn, J. M. Northrup, M.‐C. Richer, G. Szor, and M. C. Runge. 2021.
Incorporating climate change in a harvest risk assessment for polar bears Ursus maritimus in Southern Hudson Bay.
Biological Conservation https://doi.org/10.1016/j.biocon.2021.109128.Mudge, M.C., Nunn, B.L., Firth, E., Ewert, M., Hales, K., Fondrie, W.E., Noble, W.S., Toner, J., Light, B. and Junge, K.A., 2021. Subzero, saline incubations of Colwellia psychrerythraea reveal strategies and biomarkers for sustained life in extreme icy environments. Environmental Microbiology. https://doi.org/10.1111/1462-2920.15485
Rode, K. D., E. V. Regehr, J. F. Bromaghin, R. R. Wilson, M. S. Martin, J. A. Crawford, and L. T. Quakenbush. Seal body
condition and atmospheric circulation patterns influence polar bear body condition, recruitment, and feeding ecology in
the Chukchi Sea. Global Change Biology:18. https://doi.org/10.1111/gcb.15572Laidre, K. L., S. N. Atkinson, E. V. Regehr, H. L. Stern, E. W. Born, Ø. Wiig, N. J. Lunn, M. Dyck, P. Heagerty, and B. R.
Cohen. 2020. Transient benefits of climate change for a high‐Arctic polar bear (Ursus maritimus) subpopulation. Global
Change Biology 26:6251‐6265. https://doi.org/10.1111/gcb.15286King, M. D., Howat, I. M., Candela, S. G., Jeong, S., Noh, M. J., Noël, B., van den Broeke, M. R., Wouters, B., and Negrete, A.: Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Nature Communications Earth & Environment, 1,1 (2020). https://doi.org/10.1038/s43247-020-0001-2
Rode, K. D., T. C. Atwood, G. W. Thiemann, M. St Martin, R. R. Wilson, G. M. Durner, E. V. Regehr, S. L. Talbot, G. K. Sage,
A. M. Pagano, and K. S. Simac. 2020. Identifying reliable indicators of fitness in polar bears. PLoS ONE 15:27. https://doi.org/10.1371/journal.pone.0237444Kwok, R., G. F. Cunningham, S. Kacimi, M. A. Webster, N. T. Kurtz, and A. A. Petty, (2020) Decay of the snow cover over Arctic sea from ICESat-2 acquisitions during summer melt in 2019, Geophys. Res. Lett., https://doi.org/10.1029/2020GL088209
Donohoe, A., K.C. Armour, G.H. Roe and D.S. Battisti (2020). The partitioning of atmospheric energy transport and changes under climate forcing in coupled climate models. Journal of Climate. DOI: 10.1175/JCLI-D-19-0797.1
Donohoe, A., E.J. Dawson, L. McMurdie, D.S. Battisti and A. Rhines (2020). Seasonal asymmetries in the lag between insolation and surface temperature. Journal of Climate. DOI: 10.1175/JCLI-D-19-0329.1
Donohoe, A., E. Blanchard-Wrigglesworth., A. Schweiger, P. Rasch (2020). The effect of atmospheric transmissivity on model and observational estimates of the sea ice albedo feedback. Journal of Climate. DOI: 10.1175/JCLI-D-19-0674.1.
Kwok, R., S. Kacimi, M. Webster, N. T. Kurtz, A. A. Petty (2020), Arctic snow depth and sea ice thickness from ICESat-2 and CryoSat-2 freeboards: A first examination, 125(3). doi:10.1029/2019jc016008
Zhang, J., Spitz, Y. H., Steele, M., Ashjian, C., Campbell, R., & Schweiger, A. (2020). Biophysical consequences of a relaxing Beaufort Gyre. Geophysical Research Letters, n/a(n/a). doi:10.1029/2019gl085990
Laidre, K. L., S. Atkinson, E. V. Regehr, H. L. Stern, E. W. Born, Ø. Wiig, N. J. Lunn, and M. Dyck. 2020. Interrelated
ecological impacts of climate change on an apex predator. Ecological Applications 30:18.Baxter, I., Ding, Q., Schweiger, A., L’Heureux, M., Baxter, S., Wang, T., . . . Lu, J. (2019). How Tropical Pacific Surface Cooling Contributed to Accelerated Sea Ice Melt from 2007 to 2012 as Ice Is Thinned by Anthropogenic Forcing. Journal of Climate, 32(24), 8583-8602. doi:10.1175/JCLI-D-18-0783.1
Moore, G. W. K., Schweiger, A., Zhang, J., & Steele, M. (2019). Spatiotemporal Variability of Sea Ice in the Arctic’s Last Ice Area. Geophysical Research Letters, 46(20), 11237-11243. doi:10.1029/2019gl083722
2019). Controls on the width of tropical precipitation and its contraction under global warming. Geophysical Research Letters, 46, 9958– 9967. https://doi.org/10.1029/2019GL082969
, , & (Yang, Q., Mu, L., Wu, X., Liu, J., Zheng, F., Zhang, J., Li, C., 2019. Improving Arctic sea ice seasonal outlook by ensemble prediction using an ice-ocean model. Atmospheric Research, 227, pp. 14-23. https://doi.org/10.1016/j.atmosres.2019.04.021
Smith, M. and Thomson, J., 2019. Ocean surface turbulence in newly formed marginal ice zones. Journal of Geophysical Research: Oceans, 124(3), pp.1382-1398. doi: 10.1029/2018JC014405
Kwok, R., T. Markus, N. T. Kurtz, A. A. Petty, T. A. Neumann, S. L. Farrell. G. F. Cunningham, D. W. Hancock, A. Ivanoff, and J. T. Wimert (2019), Surface height and sea ice freeboard of the Arctic Ocean frosm ICESat-2, Characteristics and early results. J. Geophys. Res. Oceans. doi:10.1029/2019JC015486
T. C. Sutterley, T. Markus, T. Neumann, M. van den Broeke, J. M. van Wessem and S. Ligtenberg. Antarctic Ice Shelf Thickness Change from Multi-Mission Lidar Mapping. The Cryosphere, 2019. https://doi.org/10.5194/tc-13-1801-2019
Schweiger, A.J., K.R. Wood, and J. Zhang, 2019: Arctic Sea Ice Volume Variability over 1901–2010: A Model-Based Reconstruction. J. of Climate, 32, 4731-4752, https://journals.ametsoc.org/doi/pdf/10.1175/JCLI-D-19-0008.1
Mack, S. L., Dinniman, M. S., Klinck, J., McGillicuddy, D. J., and Padman, L.. (2019), Modeling ocean eddies on Antarctica’s cold water continental shelves and their effects on ice shelf basal melting. J. Geophys. Res. Oceans, 124. https://doi.org/10.1029/2018JC014688
Hill, David F., E. A. Burakowski, R. L. Crumley, J. Keon, J. M. Hu, A. A. Arendt, K. Wikstrom Jones, and G. J. Wolken, Converting snow depth to snow water equivalent using climatological variables. The Cryosphere, 13, 1767–1784, https://doi.org/10.5194/tc-13-1767-2019, 2019.
Laurence, G., Burgess, D., Copland, L., Langley, K., Gogineni, P., Paden, J., Leuschen, C., van As, D., Fausto, R., Joughin, I., Smith, B. (2019), Measuring Height Change Around the Periphery of the Greenland Ice Sheet With Radar Altimetry. Frontiers in Earth Science, 7:146. doi:10.3389/feart.2019.00146
Liu, Z., & Schweiger, A., 2019. Low-level and surface wind jets near sea ice edge in the Beaufort Sea in late autumn. Journal of Geophysical Research: Atmospheres, 124, 6873– 6891. https://doi.org/10.1029/2018JD029770
Hale, J. R., Laidre, K. L., Tinker, M. T., Jameson, R. J., Jeffries, S. J., Larson, S. E. and Bodkin, J. L. (2019), Influence of occupation history and habitat on Washington sea otter diet. Mar Mam Sci. doi:10.1111/mms.12598
2019: Meridional Atmospheric Heat Transport Constrained by Energetics and Mediated by Large-Scale Diffusion. J. Climate, 32, 3655–3680, https://doi.org/10.1175/JCLI-D-18-0563.1
,Yoon, Y., Kumar, S. V., Forman, B. A., Zaitchik, B. F., Kwon, Y., Qian, Y., Rupper, S., Maggioni V., Houser P., Kirschbaum D., Richey A., Arendt A., Mocko D., Jacob J., Bhanja S., Mukherjee A. (2019) Evaluating the Uncertainty of Terrestrial Water Budget Components Over High Mountain Asia. Frontiers in Earth Science, 7, https://doi.org/10.3389/feart.2019.00120
Peterson, P.K., Hartwig, M., May, N.W., Schwartz, E., Rigor, I., Ermold, W., Steele, M., Morison, J.H., Nghiem, S.V. and Pratt, K.A., 2019. Snowpack measurements suggest role for multi-year sea ice regions in Arctic atmospheric bromine and chlorine chemistry. Elem Sci Anth, 7(1), p.14. DOI: http://doi.org/10.1525/elementa.352
Sathe, S., Orellana, M. V., Baliga, N. S. and Durand, P. M. (2019), Temporal and metabolic overlap between lipid accumulation and programmed cell death due to nitrogen starvation in the unicellular chlorophyte Chlamydomonas reinhardtii. Phycological Res., 67: 173-183. doi:10.1111/pre.12368
2019). Does surface temperature respond to or determine downwelling longwave radiation? Geophysical Research Letters, 46, 2781– 2789. https://doi.org/10.1029/2019GL082220
, , & (2019). New estimates of ice and oxygen fluxes across the entire lid of Lake Vostok from observations of englacial radio wave attenuation. Journal of Geophysical Research: Earth Surface, 124, 795–811. https://doi.org/10.1029/2018JF004692
, , & (Whiteman, J. P., H. J. Harlow, G. M. Durner, E. V. Regehr, S. C. Amstrup, and M. Ben-David. 2019. Heightened Immune System Function in Polar Bears Using Terrestrial Habitats. Physiological and Biochemical Zoology 92:1-11. https://doi.org/10.1086/698996.
Kvile, K., C. Ashjian, Z. Feng, J. Zhang, and R. Ji, Pushing the limit: Resilience of an Arctic copepod to environmental fluctuations. Glob Change Biol. 2018; 24:5426-5439. https://doi.org/10.1111/gcb.14419
Moore, G.W.K., A. Schweiger, J. Zhang, and M. Steele, What caused the remarkable February 2018 North Greenland Polynya? Geophys. Res. Lett., 45, https://doi.org/10.1029/
2018GL080902 , 2018.Junge, K., Cameron, K. and Nunn, B., 2019. Diversity of Psychrophilic Bacteria in Sea and Glacier Ice Environments—Insights Through Genomics, Metagenomics, and Proteomics Approaches. In Microbial Diversity in the Genomic Era (pp. 197-216). Academic Press. https://doi.org/10.1016/B978-0-12-814849-5.00012-5
Wiig, Ø., Henrichsen, P., Sjøvold, T., Born, E.W., Dietz, R., Sonne, C., and Aars, J. (2019). Variation in non-metrical skull traits of polar bears (Ursus maritimus) and relationships across East Greenland and adjacent subpopulations (1830–2013). Polar Biology 42:3, 461-474. https://doi.org/10.1007/s00300-018-2435-x
E. Ciracì, I. Velicogna and T. C. Sutterley. Mass Balance of Novaya Zemlya Archipelago, Russian High Arctic, Using Time-Variable Gravity from GRACE and Altimetry Data from ICESat and CryoSat-2. Remote Sensing, 10(11): 1817, 2018. https://www.mdpi.com/2072-4292/10/11/1817
Regehr, E.V., Hostetter, N.J., Wilson, R.R., Rode, K.D., St. Martin, M., Converse, S.J. (2018), Integrated Population Modeling Provides the First Empirical Estimates of Vital Rates and Abundance for Polar Bears in the Chukchi Sea. Scientific Reports. 8: 16780, https://doi.org/10.1038/s41598-018-34824-7
Laidre K. L., H. Stern, E. W. Born, P. Heagerty, S, Atkinson, Ø. Wiig, N. J. Lunn, E. V. Regehr, R. McGovern, M. Dyck. 2018. Changes in winter and spring resource selection by polar bears Ursus maritimus in Baffin Bay over two decades of sea-ice loss. Endangered Species Research 36:1-14. https://doi.org/10.3354/esr00886
Laidre K. L., E. W. Born, S. N. Atkinson, Ø. Wiig, L. W. Andersen, N. J. Lunn, M. Dyck, E. V. Regehr, R. McGovern and P. Heagerty. 2018. Range contraction and increasing isolation of a polar bear subpopulation in an era of sea ice loss. Ecology and Evolution DOI: 10.1002/ece3.3809
Hauser, D.D.W., K.L. Laidre, H.L. Stern, R.S. Suydam, P.R. Richard. 2018. Indirect effects of sea ice loss on summer-fall habitat and behaviour for sympatric populations of an Arctic marine predator. Diversity and Distributions https://doi.org/10.1111/ddi.12722.
Laidre, K. L. and E. V. Regehr. 2018. Arctic marine mammals. In “Encyclopedia of Marine Mammals” (Bernd Würsig, J.G.M. Thewissen, and Kit M. Kovacs, eds.), 3rd edition. Pp 34-40. Academic Press/Elsevier, San Diego, CA, USA.
Chambault, P., C. Moesgaard Albertsen, T. A. Patterson, R. G. Hansen, O. Tervo, K. L. Laidre & M. P. Heide-Jørgensen. 2018. Sea surface temperature predicts the movements of an Arctic cetacean: the bowhead whale. Scientific Reports 8:9658. doi:10.1038/s41598-018-27966