Karen Junge

Selected Projects

  • IIRD 2024 – Enceladus Plumes

    The Saturnian moon Enceladus is a particularly promising target in the search for extraterrestrial life detection, given its large liquid ocean. While direct sample retrieval from this ocean is made difficult by the kilometers-thick ice shell surrounding it, Enceladus is host to prominent geysers that deliver the contents of this ocean to the surface (featured in this image taken during a Cassini flyby). This is a boon to life detection missions, but any life or biosignatures present in this ejecta would be exposed to the stressors of aerosolization, average surface temperatures nearing -200C, prolonged exposure to near-vacuum conditions, and UV…

    read more »
  • ICEX2024 – Operation ICE WHALE: Astrobiology Studies on Beaufort Sea Ice

    In this pilot project (funded through the NASA Exobiology program) our Astrobiology team (PI: Karen Junge, Polar Science Center, APL, UW; postdoc: Ardith Bravenec, UW Earth and Space Science, graduate student Kaitlin Harrison, UW oceanography, both associated with the UW Astrobiology program) will join with the Navy as it conducts its biennial Ice Exercise (ICEX2024 – Operation ICE WHALE) this March (2024, see Fox News video) on sea ice off the coast of Prudhoe Bay, Alaska. We will study how microbes, temperature, and salt content affect the biological and freezing equilibrium signatures of this system with relevance to Enceladus and Europa while also training junior scientists in astrobiology-related field and laboratory work. Liquid water is essential to life as we know it.

    read more »
  • Antarctic Sea Ice and Snow Microbial Bromocarbon Processes

    Naturally produced brominated organic compounds are ubiquitous in the oceans and are thought to be largely responsible for the formation of the Antarctic “ozone hole” in Spring. In order to accurately model and forecast global ozone and the climate, it is critical to include reactive bromine and brominated organic compounds (bromocarbons). However, bromocarbon measurements for the Antarctic are limited, especially during Spring.

    read more »
  • Biosignatures in Earth and Mars ice and brines

    This project devises low-temperature liquid-water environments mimicking the known chemistry of brines. The research team measures microbial growth rate, metabolic activity, ability to survive while inactive, and longevity for psychrophiles to reveal proteomic biosignatures for growth, activity, and survival strategies, and understand key molecular responses of life in these environments.

    read more »

ABOUT PSC