Jinlun Zhang

Selected Projects

  • Atmospheric Profiles, Clouds and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas

    The role and magnitude of feedback processes, such as the ice-albedo feedback cannot be observed. They must be diagnosed from validated models that include the appropriate physics. For example, observational studies, attempting to discern the effect of clouds on sea ice (e.g. Schweiger et al 2008) confront the difficulty of separating cloud variability from other changes, such as atmospheric circulation. Model experiments that can isolate the role of a specific mechanism (e.g. Bitz, 2009) are needed to test and advance our current understanding of feedbacks in the atmosphere-ice-ocean system and to ultimately improve predictive capabilities for weather and climate. The…

    read more »
  • Planktonic Ecosystem Response to Changing Sea Ice and Upper Ocean Physics in the Chukchi and Beaufort Seas: Modeling, Satellite and In Situ Observations

    We propose a study of the historical, contemporary, and future changes of the Chukchi and Beaufort marine planktonic ecosystem in response to changes in the sea ice cover and the upper ocean physics. Our scientific objectives are to:1) Synthesize the historical evolution of the biology-ice-ocean system in the Chukchi and Beaufort seas from 1978 to the present through modeling and analyses of satellite and in situ observations; quantify and understand the large-scale changes that have occurred in the sea ice, upper ocean, and marine planktonic ecosystem over the shelves and the basin.2) Identify key linkages and interactions between the sea…

    read more »
  • Investigations of Spatial and Temporal Variability of Ocean and Ice Conditions In and Near the Marginal Ice Zone (MIZOPEX)

    Recent years have seen extreme changes in the Arctic sea ice cover and adjacent open ocean – reduced ice extent, record sea surface temperatures, thinner and younger ice, and loss of ice in areas that had been ice-covered throughout human memory.Particularly striking are changes within marginal ice zones (MIZ) – areas that are becoming increasingly covered by low concentration, diffuse sea ice.The proposed work, referred to here as the “Marginal Ice Zone Ocean and Ice Observations and Processes Experiment (MIZOPEX)”, brings to bear the capabilities of unmanned aircraft systems (UAS) in concert with in-situ observations and satellite remote sensing to…

    read more »
  • Forecasting Changes in Habitat Use by Bowhead Whales in Response to Arctic Climate Change

    PI: Dr. Elizabeth HolmesCo-Investigator for APL: Jinlun ZhangThe effects of climate change are projected to be disproportionately pronounced in polar regions, where changes in the extent of Arctic sea ice will have an effect on all trophic levels. The endangered bowhead whale (Balaena mysticetus) is one of the largest animals in the Arctic, yet they feed on some of the smallest Arctic animals, zooplankton. Therefore, physically-induced bottom-up changes may be quickly reflected in the distribution of bowhead whales. Some of the important threats to bowhead whales include shipping and offshore oil drilling. Loss of sea ice in the Arctic has…

    read more »
  • Reconstruction of the Eastern Bering Ice-Ocean System by Variational Assimilation of the BEST-BSIERP Data

    PI: Jinlun ZhangTremendous amounts of in situ and satellite data have been collected for the eastern Bering sea since 2007 in the framework of the Bering Sea Ecosystem STudy (BEST) and the Bering Sea Integrated Ecosystem Research Program (BSIERP) funded by the National Science Foundation (NSF) and the North Pacific Research Board. The rich collection of BEST-BSIERP observations and other sources of data provide an excellent opportunity for synthesis through modeling and data assimilation to improve understanding of changes in the physical forcings of the Bering ecosystem in response to climate change.This project will include the following three major goals.…

    read more »
  • Bias-Corrected Sea Ice Thickness from Satellite, Aircraft, and Subsurface Measurements

    The primary objective of this research is to construct a comprehensive bias-corrected sea ice thickness record and use it to better quantify and understand the dramatic changes that have been observed in the Arctic ice pack. To do this all available Arctic sea ice thickness observations will be integrated, from satellite, aircraft, and subsurface measurements, and used to identify and correct systematic errors through comparisons with a common reference. With the resultant record four science questions will be answered:• What are the systematic differences between different measurement systems for sea ice thickness?• What are the spatial patterns in the trends…

    read more »
  • Sensitivity of Arctic Ocean Change to Background Mixing

    This project is motivated by recent findings showing the sensitivity of Arctic Ocean circulation to background deep-ocean diapycnal mixing. Mixing in the stratified ocean is related to internal wave energy, which tends to be low under the Arctic Ocean ice cover. Consequently, as ice cover declines background mixing may increase and, among other changes, bring more Atlantic Water heat to the surface to melt ice, a potentially important positive climate feedback. To understand the influence of background mixing and to improve models of the changing Arctic Ocean, we are taking advantage of the latest analysis techniques to examine existing internal…

    read more »
  • Arctic Sea Ice Volume Anomaly

    The Arctic Sea Ice Volume Anomaly time series is calculated using the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) developed at APL/PSC.  Updates will be generated at approximately monthly intervals.

    read more »
  • Variability and Trends in Antarctic Sea Ice

    This project will investigate, through modeling and data assimilation, the historical evolution of the Antarctic sea ice–ocean system from 1979 to the present to enhance our understanding of the large-scale changes that have occurred in the sea ice and the upper ocean in response to changes in atmospheric circulation.

    read more »
  • The Fate of Summertime Arctic Ocean Heating: A Study of Ice-Albedo Feedback on Seasonal to Interannual Time Scales

    PI: Mike Steele; Co-I Ron Lindsay, Axel Schweiger, Jinlun Zhang The main objective of this study is to determine the fate of solar energy absorbed by the arctic seas during summer, with a specific focus on its impact on the sea ice pack. Investigators further seek to understand the fate of this heat during the winter and even beyond to the following summer.

    read more »
  • The Arctic Ocean Model Intercomparison Project (AOMIP): Synthesis and Integration

    The AOMIP science goals are to validate and improve Arctic Ocean models in a coordinated fashion and investigate variability of the Arctic Ocean and sea ice at seasonal to decadal time scales, and identify mechanisms responsible for the observed changes.

    read more »
  • Seasonal Ensemble Forecasts of Arctic Sea Ice

    Project investigators aim to improve upon the existing seasonal ensemble forecasting system and use the system to predict sea ice conditions in the arctic and subarctic seas with lead times ranging from two weeks to three seasons.

    read more »
  • Changing Seasonality of the Arctic: Alteration of Production Cycles and Trophic Linkages in Response to Changes in Sea Ice and Upper Ocean Physics

    PI: Jinlun ZhangThis project will investigate future changes in the seasonal linkages and interactions among arctic sea ice, the water column, and the marine production cycles and trophic structure as an integrated system. This is a collaborative project led by Jinlun Zhang with Mike Steele, Univ. of WA, Y. Spitz, Oregon State Univ., C. Ashjian, Woods Hole, and R. Campbell, Univ. of Rhode Island.Read More

    read more »
  • Changing Sea Ice and the Bering Sea Ecosystem

    The Bering Sea – lying at the northern end of the Pacific Ocean and north of the Aleutian Chain – is the source of over 50% of the total US fish catch and the home to immense populations of birds and marine mammals. This project uses a state-of-the-art numerical ocean-ice model to investigate prior (and predict future) changes in the Bering Sea ice cover and study the impacts of these changes on Bering Sea marine and eco-systems.

    read more »
  • Projections of an Ice-Diminished Arctic Ocean – Retrospection and Future Projection

    Significant changes in arctic climate have been detected in recent years. One of the most striking changes is the decline of sea ice concurrent with changes in atmospheric circulation and increased surface air temperature.

    read more »

ABOUT PSC