Archive for the «Publications» Category

  • Ni Z, Arevalo R Jr, Bardyn A, Willhite L, Ray S, Southard A, Danell R, Graham J, Li X, Chou L, Briois C, Thirkell L, Makarov A, Brinckerhoff W, Eigenbrode J, Junge K, Nunn BL. (2023). Detection of Short Peptides as Putative Biosignatures of Psychrophiles via Laser Desorption Mass Spectrometry. Astrobiology23(6), 657-669. PubMed PMID: 37134219. https://doi.org/10.1089/ast.2022.0138. 
     
    1. Buckley, E.M., Farrell, S.L., Herzfeld, U., Webster, M., Trantow, T., Baney, O.N., Duncan, K., Han, H., & M. Lawson (accepted), Observing the evolution of summer melt on multiyear sea ice with ICESat-2 and Sentinel-2, The Cryosphere, 17, 3695–3719, doi: 10.5194/tc-17-3695-2023.
    2. Boisvert, L., Webster, M., Parker, C.L., and R.M. Forbes (2023), Rainy days in the Arctic, J. Clim., 36, doi: 10.1175/JCLI-D-22-0428.1
    3. MacFarlane, A., Schneebeli, M., Dadic, Tavri, A., Immerz, A., Polashenski, C., Krampe, D., Clemens-Sewall, D., Wagner, D., Perovich, D., Henna-Reetta, H., Raphael, I., Matero, I., Regnery, J., Smith, M., Nicolaus, M., Jaggi, M., Oggier, M., Webster, M., Lehning, M., Kolabutin, N., Itkin, P., Naderpour, R., Pirazzini, R., Hammerle, S., Arndt, S., & S. Fons (accepted), A database on snow on sea ice in the central Arctic collected during the MOSAiC expedition, Scientific Data, doi.org/10.1038/s41597-023-02273-1.
    4. Calmer, R., Boer, G. de, Hamilton, J., Lawrence, D., Webster, M., Wright, N., Shupe, M.D., Cox, C., & J. Cassano (accepted), Relationships between summertime surface albedo and melt pond fraction in the central Arctic Ocean: The aggregate scale of albedo obtained on the MOSAiC floe, Elementa: Sci. of the Anthro., https://doi.org/10.1525/elementa.2023.00001.
    5. Salganik, E., Katlein, C., Lange, B., Matero, I., Lei, R., Fong, A., Fons, S., Divine, D., Oggier, M., Castellani, G., Bozzato, D., Chamberlain, E., Hoppe, C., Müller, O., Gardner, J., Rinke, A., Pereira, P., Ulfsbo, A., Marsay, C., Webster, M., Maus, S., Høyland, V., & M. Granskog (2023), Temporal evolution of under-ice meltwater layers and false bottoms and their impact on summer Arctic sea ice mass balance, Elementa: Sci. of the Anthro., doi.org/10.1525/elementa.2022.00035.
    6. Nielhaus, H., Spreen, G., Birnbaum, G., Istomina, L., Jakel, E., Linhardt, F., Neckel, N., Nicolaus, M., Sperzel T., Webster, M., & N. Wright (2023), Sentinel-2 Based Melt Pond Fraction: A Case Study Along the MOSAiC Drift, Geophys. Res. Lett., https://doi.org/10.1029/2022GL102102.
    7. MacFarlane, A., Dadic, R., Smith, M., Light, B., Nicolaus, M., Henna-Reetta, H., Webster, M., Linhardt, F. Hammerle, S., & M. Schneebeli (2023), Evolution of the microstructure and reflectance of the surface scattering layer on melting level Arctic sea ice, Elementa: Sci. of the Anthro., https://doi.org/10.1525/elementa.2022.00103.
    8. Ballinger, T., Bhatt, U., Bieniek, P., Brettschneider, B., Lader, R., Littell, J., Thoman, R., Waigl, C., Walsh, J., & M. Webster (2023), Alaska terrestrial and marine climate trends, 1957-2001: An analysis for NCA5, J. Clim., https://doi.org/10.1175/JCLI-D-22-0434.1.
    9. Horvath, S., Boisvert, L., Parker, C., Webster, M., Taylor, P., & R. Boeke (2023), A database for investigating the fate of Arctic sea ice and interaction with the polar atmosphere in a Lagrangian framework, Scientific Data., https://doi.org/10.1038/s41597-023-01987-6.
    10. Itkin, P., Hendricks, S., Webster, M., Albedyll, L.v., Arndt, S., Divine, D., Jaggi, M., Oggier, M., Raphael, I., Ricker, R., Rohde, J., Schneebeli, M., & G. Liston (2023), Sea ice and snow characteristics from year-long transects at the MOSAiC Central Observatory, Elementa: Sci. of the Anthro., https://doi.org/10.1525/elementa.2022.00048.
    11. Thielke, L., Fuchs, N., Spreen, G., Tremblay, B., Birnbaum, G., Huntemann, M., Hutter, N., Itkin, P., Jutila, A., and M. Webster (2023), Preconditioning of summer melt ponds from winter sea ice surface temperature, Geophys. Res. Lett., 50, e2022GL101493. https://doi.org/10.1029/2022GL101493.
    12. Blanchard-Wrigglesworth, E., Webster, M., Boisvert, L., Parker, C., & C. Horvat (2022), Record low SLP Arctic cyclone of January 2022: characteristics, impacts, and predictability, J. Geophys. Res. Atmos. doi: 10.1029/2022JD037161.
    13. Parker, C., Mooney, P., Webster, M., & L. Boisvert (2022), The influence of climate change on Arctic cyclones: recent and future, Nat. Comms. doi:10.1038/s41467-022-34126-7.
    14. Webster, M., & S.G. Warren (2022), Regional geoengineering using tiny glass bubbles would accelerate the loss of Arctic sea ice, Earth’s Future, 10, e2022EF002815, doi:10.1029/2022EF002815.
    15. Light, B., Smith, M.M., Perovich, D.K., Webster, M., Holland, M., Linhardt, F., Raphael, I.A., Clemens-Sewall, D., MacFarlane, A., Anhaus, P., & D. Bailey (2022), Arctic sea ice albedo: spectral composition, spatial heterogeneity, and temporal evolution observed during the MOSAiC drift, Elementa: Sci. of the Anthro., 10(1) doi:10.1525/elementa.2021.000103.
    16. Smith, M.M., Albedyll, L.v., Raphael, I., Lange, B., Matero, I., Salganik, E., Webster, M., Granskog, M.A., Fong, A., Lei, R., & B. Light (2022), Quantifying false bottoms and under-ice meltwater layers beneath Arctic summer sea ice with fine-scale observations, Elementa: Sci. of the Anthro. 10(1) doi:10.1525/elementa.2021.000116.
    17. Huang, Y., Taylor, P.C., Rose, F.G., Rutan, D.A., Shupe, M.A., Webster M., & M. Smith (2022), Towards a more realistic representation of surface albedo in NASA CERES satellite products: a comparison with the MOSAiC field campaign, Elementa: Sci. of the Anthro., 10, doi:10.1525/elementa.2022.00013.
    18. Webster, M., Holland, M., Wright, N.C., Hendricks, S., Hutter, N., Itkin, P., Light, B., Linhardt, F., Perovich, D.K., Raphael, I.A., Smith, M.M., Albedyll, L.v., & J. Zhang (2022), Spatiotemporal evolution of melt ponds on Arctic sea ice: MOSAiC observations and model results, Elementa: Sci. of the Anthro. 10, doi:10.1525/elementa.2021.000072.
    19. Albedyll, L.v., Hendricks, S., Grodofzig, R., Krumpen, T., Arndt, S., Belter, H.J., Birnbaum, G., Cheng, B., Hoppmann, M., Hutchings, J., Itkin, P., Lei, R., Nicolaus, M., Ricker, R., Rohde, J., Suhrhoff, M., Timofeeva, A., Watkins, D., Webster, M., & C. Haas (2022), Thermodynamic and dynamic contributions to seasonal Arctic sea ice thickness distributions from airborne observations, Elementa: Sci. of the Anthro. 10, doi:10.1525/elementa.2021.00074.
    20. Webster, M., Rigor, I., & N. Wright (2022), Observing Arctic sea ice, Oceanography. 35, doi:10.5670/oceanog.2022.115.
    21. Kay, J.E., DeRepentigny, P., Holland, M.M., Bailey, D.A., DuVivier, A.K., Blanchard-Wrigglesworth, E., Deser, C., Jahn, A., Singh, H.A., Smith, M.M., Webster, M., Edwards, J., Lee, S., Rodgers, K., & N.A. Rosenbloom (2022), Less surface sea ice melt in the CESM2 improves Arctic sea ice simulation with minimal non-polar climate impacts, J. of Advances in Modeling Earth Systems, 14, doi:10.1029/2021MS002679.
    22. Nicolaus, M., et al. (2022), Overview of the MOSAiC expedition – snow and sea ice, Elementa: Sci. of the Anthro. 10, doi:10.1525/elementa.2021.000046.
    23. Holland, M.M., Clemens-Sewall, D., Landrum, D., Light, B., Perovich, D., Polashenski, C., Smith, M., & M. Webster (2021), The influence of snow on sea ice as assessed from simulations of CESM2, The Cryosphere, doi:10.5194/tc-2021-174.
    24. Perovich, D., Smith, M., Light B., & M. Webster (2021), Meltwater sources and sinks for multiyear Arctic sea ice in summer, The Cryosphere. doi:10.5194/tc-2021-114.
    25. Belter, J., Krumpen, T., von Albedyll, L., Alekseeva, T., Frolov, S., Hendricks, S., Herber, A., Polyakov, I., Raphael, I., Ricker, R., Serovetnikov, S., Webster, M., & C. Haas (2021), Interannual variability in Transpolar Drift summer sea ice thickness and potential impact of Atlantification, The Cryosphere. doi:10.5194/tc-15-2575-2021.
    26. Webster, M., DuVivier, A.K., Holland, M.M. & D.A. Bailey (2021), Snow on Arctic sea ice in a warming climate as simulated in CESM, J. Geophys. Res. Oceans. 125, doi: 10.1029/2020JC016308.
    27. Boisvert, L., Webster, M., Petty, A., Markus, T., Cullather, R., & D. Bromwich (2020), Intercomparison of precipitation estimates over the Southern Ocean from atmospheric reanalyses, J. Clim., doi:10.1175/JCLI-D-20-0044.1
    28. Kwok, R., Cunningham, G., Kacimi, S., Webster, M., Kurtz, N., & A. Petty (2020), Decay of the snow cover over Arctic sea ice from ICESat-2 acquisitions during summer melt in 2019, Geophys. Res. Lett. doi:10.1029/2020GL088209.
    29. Kwok, R., Kacimi, S., Webster, M., Markus, T., Kurtz, N., & A. Petty (2020), Snow depth and sea ice thickness from ICESat-2 and CryoSat-2 freeboards: A first examination, J. Geophys. Res. Oceans. doi:10.1029/2019JC016008.
    30. DuVivier, A., DeRepentigny, P., Holland, M., Webster, M., Kay, J., & D. Perovich (2020), Going with the floe: tracking CESM Large Ensemble sea ice in the Arctic provides context for ship-based observations, The Cryosphere, doi:10.5194/tc-14-1259-2020.
    31. Webster, M., Parker, C., Boisvert, L., & R. Kwok (2019), The role of cyclones in snow accumulation on Arctic sea ice, Nat. Comms. 10, 5285, doi:10.1038/s41467-019-13299-8.
    32. Zhang, J., Schweiger, A., Webster, M., Light, B., Steele, M., Ashjian, C., Campbell, R., & Y. Spitz (2018), Melt pond conditions on declining Arctic sea ice over 1979–2016: Model development, validation, and results, J. Geophys. Res., Oceans., 123 (11), doi:10.1029/2018JC014298.
    33. Petty, A., Webster, M., Boisvert, L., & T. Markus (2018), The NASA Eulerian Snow on Sea Ice Model (NESOSIM) v1.0: initial model development and analysis, Geosci. Model Dev. 11, 4577-4602, doi.org/10.5194/gmd-11-4577-2018.
    34. Webster, M., Gerland, S., Holland, M., Hunke, E., Kwok, R., Lecomte, O., Massom, R., Perovich, D., & M. Sturm (2018) Snow in the changing sea-ice systems, Nat. Clim. Change, 8, doi:10.1038/s41558-018-0286-7.
    35. Boisvert, L., Webster, M., Petty, A., Markus, T., Bromwich, D., & R. Cullather (2018), Intercomparison of precipitation estimates over the Arctic Ocean and its peripheral seas from reanalyses, J. Clim., 31(20), 8441–8462, doi:10.1175/JCLI-D-18-0125.1.
    36. Blanchard-Wrigglesworth, E., Webster, M., Farrell, S. L., & C. Bitz (2018), Reconstruction of snow on Arctic sea ice, J. Geophys. Res., 123 (5): 3588-3602, doi:10.1002/2017jcc013364
    37. Contributing author of the Snow, Water, Ice and Permafrost in the Arctic (SWIPA) assessment, Ch. 6.2: “Changes in sea ice thermodynamics, age and dynamic processes” (2017).
    38. Kwok, R., Kurtz, N. T., Brucker, L., Ivanoff, A., Newman, T., Farrell, S. L., King, J., Howell, S., Webster, M., Paden, J., Leuschen, C., MacGregor, J.A., Richter-Menge, J., Harbeck, J., & M. Tschudi (2017). Intercomparison of snow depth retrievals over Arctic sea ice from radar data acquired by Operation IceBridge. The Cryosphere, 11(6), 2571–2593. doi:10.5194/tc-11-2571-2017.
    39. Light, B., Perovich, D.K., Webster, M., Polashenski, C.M., & R. Dadic (2015), Optical properties of melting first-year Arctic sea ice, J. Geophys. Res. Oceans, doi:10.1029/2015JC011163.
    40. Webster, M., Rigor, I.G., Perovich, D.K., Richter-Menge, J.A., Polashenski, C.M., & B. Light (2015), Seasonal evolution of melt ponds on Arctic sea ice, J. Geophys. Res. Oceans, doi:10.1029/2015JC011030.
    41. Polashenski, C.M., Perovich, D.K., Frey, K.E., Cooper, L.W., Logvinova, C.I., Dadic, R., Light, B., Kelly, H.P., Trusel, L.D., & M. Webster (2015), Physical and morphological properties of sea ice in the Chukchi and Beaufort Seas during the 2010 and 2011 NASA ICESCAPE missions, Deep Sea Res. Part II: Topical Studies in Ocean., doi:10.1016/j.dsr2.2015.04.006.
    42. Webster, M., Rigor, I.G., Nghiem, S.V., Kurtz, N.T., Farrell, S.L., Perovich, D.K., & M. Sturm (2014), Interdecadal changes in snow depth on Arctic sea ice, J. Geophys. Res. Oceans, 119, 5395–5406, doi:10.1002/2014JC009985.
  • Pacini, A., Pickart, R.S., Le Bras, I.A., Straneo, F., Holliday, N.P., and Spall, M.A., 2021. Cyclonic eddies in the West Greenland Boundary Current System. Journal of Physical Oceanography, 51, 2087-2102. https://doi.org/10.1175/JPO-D-20-0255.1 [doi.org]

  • Pacini, A. and Pickart, R.S., 2022. Meanders of the West Greenland Current near Cape Farewell. Deep-Sea Research I, 179, 103664. https://doi.org/10.1016/j.dsr.2021.103664 [doi.org]

  • Optimized Compton fitting and modeling for light element determination in micro-X-ray fluorescence map datasets

    O’Neil, L.P., D.C. Cating, and W.T. Elam, “Optimized Compton fitting and modeling for light element determination in micro-X-ray fluorescence map datasets,” Nucl. Instrum. Methods Phys. Res., Sect. B, 436, 173-178, doi:10.1016/j.nimb.2018.09.023, 2018.

    The Planetary Instrument for X-ray Lithochemistry (PIXL) is an X-ray fluorescence instrument scheduled to fly to Mars on NASA’s 2020 rover (Allwood et al., 2015). It will be capable of quantifying elements with an atomic number of at least 11 using X-ray fluorescence (XRF), but the detector window blocks fluorescence from lighter elements. Important elements otherwise invisible include carbon, oxygen, and nitrogen, which can make up anions in minerals of scientific interest. X-rays scattered by all elements can be detected, so the ratio of Compton to Rayleigh scatter may be measured and used to infer the presence of elements for which there is no detectable fluorescence. We have refined a fundamental parameters model to predict the Compton/Rayleigh ratio for any given composition that can be compared to an experimentally measured ratio. We compare with a published Monte Carlo model (Schoonjans et al., 2012) and to experimental values for a set of seven materials. Compton/Rayleigh ratios predicted by the model are in good, though imperfect, agreement with experimental measurements. A procedure for consistently computing the Compton/Rayleigh ratio from a noisy spectrum has also been developed using a variation on a common background removal method and peak fitting.

     

  • In-situ X-ray fluorescence to investigate iodide diffusion in opalinus clay: Demonstration of a novel experimental approach

    Jaquenoud, M., and 9 others including W.T. Elam, “In-situ X-ray fluorescence to investigate iodide diffusion in opalinus clay: Demonstration of a novel experimental approach,” Chemosphere, 269, doi:10.1016/j.chemosphere.2020.128674, 2021.

    During the last two decades, the Mont Terri rock laboratory has hosted an extensive experimental research campaign focusing on improving our understanding of radionuclide transport within Opalinus Clay. The latest diffusion experiment, the Diffusion and Retention experiment B (DR-B) has been designed based on an entirely different concept compared to all predecessor experiments. With its novel experimental methodology, which uses in-situ X-ray fluorescence (XRF) to monitor the progress of an iodide plume within the Opalinus Clay, this experiment enables large-scale and long-term data acquisition and provides an alternative method for the validation of previously acquired radionuclide transport parameters.

    After briefly presenting conventional experimental methodologies used for field diffusion experiments and highlighting their limitations, this paper will focus on the pioneer experimental methodology developed for the DR-B experiment and give a preview of the results it has delivered thus far.

     

  • Avoiding slush for hot-point drilling of glacier boreholes

    Hill’s, B.H., D.P. Winebrenner, W.T. Elam, and P.M.S. Kintner, “Avoiding slush for hot-point drilling of glacier boreholes,” Ann. Glaciol., 62, 166-170, doi:10.1017/a0g.2020.70, 2021.

    Water-filled boreholes in cold ice refreeze in hours to days, and prior attempts to keep them open with antifreeze resulted in a plug of slush effectively freezing the hole even faster. Thus, antifreeze as a method to stabilize hot-water boreholes has largely been abandoned. In the hot-point drilling case, no external water is added to the hole during drilling, so earlier antifreeze injection is possible while the drill continues melting downward. Here, we use a cylindrical Stefan model to explore slush formation within the parameter space representative of hot-point drilling. We find that earlier injection timing creates an opportunity to avoid slush entirely by injecting sufficient antifreeze to dissolve the hole past the drilled radius. As in the case of hot-water drilling, the alternative is to force mixing in the hole after antifreeze injection to ensure that ice refreezes onto the borehole wall instead of within the solution as slush.

     

  • Jensen, L. T., N. T. Lanning, C. M. Marsay, C. S. Buck, A. M. Aguilar‐Islas, R. Rember, W. M. Landing, R. M. Sherrell, and J. N. Fitzsimmons (2021), Biogeochemical cycling of colloidal trace metals in the Arctic cryosphere, Journal of Geophysical Research: Oceans, 126(8), e2021JC017394. https://doi.org/10.1029/2021JC017394

  • Regehr, E. V., M. C. R., Andrew Von Duyke, Ryan R Wilson, Lori Polasek, Karyn D Rode, Nathan J Hostetter, Sarah J
    Converse. 2021. Demographic risk assessment for a harvested species threatened by climate change: polar bears in the
    Chukchi Sea. Ecological Applications 0000:0000.

  • Regehr, E. V., M. Dyck, S. Iverson, D. S. Lee, N. J. Lunn, J. M. Northrup, M.‐C. Richer, G. Szor, and M. C. Runge. 2021.
    Incorporating climate change in a harvest risk assessment for polar bears Ursus maritimus in Southern Hudson Bay.
    Biological Conservation https://doi.org/10.1016/j.biocon.2021.109128.

  • Mudge, M.C., Nunn, B.L., Firth, E., Ewert, M., Hales, K., Fondrie, W.E., Noble, W.S., Toner, J., Light, B. and Junge, K.A., 2021. Subzero, saline incubations of Colwellia psychrerythraea reveal strategies and biomarkers for sustained life in extreme icy environments. Environmental Microbiology. https://doi.org/10.1111/1462-2920.15485

  • Rode, K. D., E. V. Regehr, J. F. Bromaghin, R. R. Wilson, M. S. Martin, J. A. Crawford, and L. T. Quakenbush. Seal body
    condition and atmospheric circulation patterns influence polar bear body condition, recruitment, and feeding ecology in
    the Chukchi Sea. Global Change Biology:18. https://doi.org/10.1111/gcb.15572

  • Jensen, L. T., P. Morton, B. S. Twining, M. I. Heller, M. Hatta, C. I. Measures, S. John, R. Zhang, P. Pinedo-Gonzalez, and R. M. Sherrell (2020), A comparison of marine Fe and Mn cycling: US GEOTRACES GN01 Western Arctic case study, Geochimica et Cosmochimica Acta. https://doi.org/10.1016/j.gca.2020.08.006.

  • Laidre, K. L., S. N. Atkinson, E. V. Regehr, H. L. Stern, E. W. Born, Ø. Wiig, N. J. Lunn, M. Dyck, P. Heagerty, and B. R.
    Cohen. 2020. Transient benefits of climate change for a high‐Arctic polar bear (Ursus maritimus) subpopulation. Global
    Change Biology 26:6251‐6265. https://doi.org/10.1111/gcb.15286

  • King, M. D., Howat, I. M., Candela, S. G., Jeong, S., Noh, M. J., Noël, B., van den Broeke, M. R., Wouters, B., and Negrete, A.: Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Nature Communications Earth & Environment, 1,1 (2020). https://doi.org/10.1038/s43247-020-0001-2

  • King, M. D., Veron, D. E., and Huntley, H. S.: Early predictors of seasonal Arctic sea ice volume loss: The impact of spring and early-summer cloud radiative conditions. Annals of Glaciology. 1–9. (2020). https://doi.org/10.1017/aog.2020.60

  • Rode, K. D., T. C. Atwood, G. W. Thiemann, M. St Martin, R. R. Wilson, G. M. Durner, E. V. Regehr, S. L. Talbot, G. K. Sage,
    A. M. Pagano, and K. S. Simac. 2020. Identifying reliable indicators of fitness in polar bears. PLoS ONE 15:27. https://doi.org/10.1371/journal.pone.0237444

  • Kwok, R., G. F. Cunningham, S. Kacimi, M. A. Webster, N. T. Kurtz, and A. A. Petty, (2020) Decay of the snow cover over Arctic sea from ICESat-2 acquisitions during summer melt in 2019, Geophys. Res. Lett., https://doi.org/10.1029/2020GL088209

  • The Transpolar Drift as a Source of Riverine and Shelf-Derived Trace Elements to the Central Arctic Ocean

    Charette, M. A., Kipp, L.E., Jensen, L.T., et al. (2020), The Transpolar Drift as a Source of Riverine and Shelf-Derived Trace Elements to the Central Arctic Ocean, Journal of Geophysical Research: Oceans, 125, e2019JC015920.10.1029/2019jc015920. https://doi.org/10.1029/2019JC015920. 

     

  • Donohoe, A., K.C. Armour, G.H. Roe and D.S. Battisti (2020). The partitioning of atmospheric energy transport and changes under climate forcing in coupled climate models. Journal of Climate.  DOI: 10.1175/JCLI-D-19-0797.1

  • Donohoe, A., E.J. Dawson, L. McMurdie, D.S. Battisti and A. Rhines (2020). Seasonal asymmetries in the lag between insolation and surface temperature. Journal of Climate.  DOI: 10.1175/JCLI-D-19-0329.1

  • Donohoe, A., E. Blanchard-Wrigglesworth., A. Schweiger, P. Rasch (2020). The effect of atmospheric transmissivity on model and observational estimates of the sea ice albedo feedback. Journal of Climate.  DOI: 10.1175/JCLI-D-19-0674.1.

  • Kwok, R., S. Kacimi, M. Webster, N. T. Kurtz, A. A. Petty (2020), Arctic snow depth and sea ice thickness from ICESat-2 and CryoSat-2 freeboards: A first examination,  125(3). doi:10.1029/2019jc016008

  • Zhang, J., Spitz, Y. H., Steele, M., Ashjian, C., Campbell, R., & Schweiger, A. (2020). Biophysical consequences of a relaxing Beaufort Gyre. Geophysical Research Letters, n/a(n/a). doi:10.1029/2019gl085990

  • Laidre, K. L., S. Atkinson, E. V. Regehr, H. L. Stern, E. W. Born, Ø. Wiig, N. J. Lunn, and M. Dyck. 2020. Interrelated
    ecological impacts of climate change on an apex predator. Ecological Applications 30:18.

  • Baxter, I., Ding, Q., Schweiger, A., L’Heureux, M., Baxter, S., Wang, T., . . . Lu, J. (2019). How Tropical Pacific Surface Cooling Contributed to Accelerated Sea Ice Melt from 2007 to 2012 as Ice Is Thinned by Anthropogenic Forcing. Journal of Climate, 32(24), 8583-8602. doi:10.1175/JCLI-D-18-0783.1

  • Moore, G. W. K., Schweiger, A., Zhang, J., & Steele, M. (2019). Spatiotemporal Variability of Sea Ice in the Arctic’s Last Ice Area. Geophysical Research Letters, 46(20), 11237-11243. doi:10.1029/2019gl083722

  • Donohoe, A.Atwood, A. R., & Byrne, M. P. ( 2019). Controls on the width of tropical precipitation and its contraction under global warmingGeophysical Research Letters469958– 9967. https://doi.org/10.1029/2019GL082969

  • Yang, Q., Mu, L., Wu, X., Liu, J., Zheng, F., Zhang, J., Li, C., 2019. Improving Arctic sea ice seasonal outlook by ensemble prediction using an ice-ocean model. Atmospheric Research, 227, pp. 14-23. https://doi.org/10.1016/j.atmosres.2019.04.021

  • Smith, M. and Thomson, J., 2019. Ocean surface turbulence in newly formed marginal ice zonesJournal of Geophysical Research: Oceans124(3), pp.1382-1398. doi: 10.1029/2018JC014405

  • Kwok, R., T. Markus, N. T. Kurtz, A. A. Petty, T. A. Neumann, S. L. Farrell. G. F. Cunningham, D. W. Hancock, A. Ivanoff, and J. T. Wimert (2019), Surface height and sea ice freeboard of the Arctic Ocean frosm ICESat-2, Characteristics and early results. J. Geophys. Res. Oceans. doi:10.1029/2019JC015486

  • T. C. Sutterley, T. Markus, T. Neumann, M. van den Broeke, J. M. van Wessem and S. Ligtenberg. Antarctic Ice Shelf Thickness Change from Multi-Mission Lidar Mapping. The Cryosphere, 2019. https://doi.org/10.5194/tc-13-1801-2019

  • Schweiger, A.J., K.R. Wood, and J. Zhang, 2019: Arctic Sea Ice Volume Variability over 1901–2010: A Model-Based Reconstruction. J. of Climate, 32, 4731-4752, https://journals.ametsoc.org/doi/pdf/10.1175/JCLI-D-19-0008.1

  • Mack, S. L., Dinniman, M. S., Klinck, J., McGillicuddy, D. J., and Padman, L.. (2019), Modeling ocean eddies on Antarctica’s cold water continental shelves and their effects on ice shelf basal melting. J. Geophys. Res. Oceans, 124. https://doi.org/10.1029/2018JC014688

  • Hill, David F., E. A. Burakowski, R. L. Crumley, J. Keon, J. M. Hu, A. A. Arendt, K. Wikstrom Jones, and G. J. Wolken, Converting snow depth to snow water equivalent using climatological variables. The Cryosphere, 13, 1767–1784, https://doi.org/10.5194/tc-13-1767-2019, 2019.

  • Laurence, G., Burgess, D., Copland, L., Langley, K., Gogineni, P., Paden, J., Leuschen, C., van As, D., Fausto, R., Joughin, I., Smith, B. (2019), Measuring Height Change Around the Periphery of the Greenland Ice Sheet With Radar Altimetry. Frontiers in Earth Science, 7:146. doi:10.3389/feart.2019.00146

  • Liu, Z., & Schweiger, A., 2019. Low-level and surface wind jets near sea ice edge in the Beaufort Sea in late autumn. Journal of Geophysical Research: Atmospheres, 124, 6873– 6891. https://doi.org/10.1029/2018JD029770

  • Hale, J. R., Laidre, K. L., Tinker, M. T., Jameson, R. J., Jeffries, S. J., Larson, S. E. and Bodkin, J. L. (2019), Influence of occupation history and habitat on Washington sea otter diet. Mar Mam Sci. doi:10.1111/mms.12598

  • Armour, K.C., N. Siler, A. Donohoe, and G.H. Roe, 2019: Meridional Atmospheric Heat Transport Constrained by Energetics and Mediated by Large-Scale Diffusion. J. Climate, 32, 3655–3680, https://doi.org/10.1175/JCLI-D-18-0563.1

  • Yoon, Y., Kumar, S. V., Forman, B. A., Zaitchik, B. F., Kwon, Y., Qian, Y., Rupper, S., Maggioni V., Houser P., Kirschbaum D., Richey A., Arendt A., Mocko D., Jacob J., Bhanja S., Mukherjee A. (2019) Evaluating the Uncertainty of Terrestrial Water Budget Components Over High Mountain Asia. Frontiers in Earth Science, 7, https://doi.org/10.3389/feart.2019.00120

  • Peterson, P.K., Hartwig, M., May, N.W., Schwartz, E., Rigor, I., Ermold, W., Steele, M., Morison, J.H., Nghiem, S.V. and Pratt, K.A., 2019. Snowpack measurements suggest role for multi-year sea ice regions in Arctic atmospheric bromine and chlorine chemistry. Elem Sci Anth, 7(1), p.14. DOI: http://doi.org/10.1525/elementa.352

  • Østerhus, S., Woodgate, R., Valdimarsson, H., Turrell, B., de Steur, L., Quadfasel, D., Olsen, S. M., Moritz, M., Lee, C. M., Larsen, K. M. H., Jónsson, S., Johnson, C., Jochumsen, K., Hansen, B., Curry, B., Cunningham, S., and Berx, B.: Arctic Mediterranean exchanges: a consistent volume budget and trends in transports from two decades of observations, Ocean Sci., 15, 379-399, https://doi.org/10.5194/os-15-379-2019, 2019
     
  • Sathe, S., Orellana, M. V., Baliga, N. S. and Durand, P. M. (2019), Temporal and metabolic overlap between lipid accumulation and programmed cell death due to nitrogen starvation in the unicellular chlorophyte Chlamydomonas reinhardtii. Phycological Res., 67: 173-183. doi:10.1111/pre.12368

  • Frantz, C. M., Light, B., Farley, S. M., Carpenter, S., Lieblappen, R., Courville, Z., Orellana, M. V., and Junge, K.: Physical and optical characteristics of heavily melted “rotten” Arctic sea ice, The Cryosphere, 13, 775-793, https://doi.org/10.5194/tc-13-775-2019, 2019.
     
  • Vargas Zeppetello, L. R.Donohoe, A., & Battisti, D. S. (2019). Does surface temperature respond to or determine downwelling longwave radiation? Geophysical Research Letters462781– 2789https://doi.org/10.1029/2019GL082220

  • Winebrenner, D. P.Kintner, P. M. S., & MacGregor, J. A. (2019). New estimates of ice and oxygen fluxes across the entire lid of Lake Vostok from observations of englacial radio wave attenuationJournal of Geophysical Research: Earth Surface124795–811.  https://doi.org/10.1029/2018JF004692

  • Whiteman, J. P., H. J. Harlow, G. M. Durner, E. V. Regehr, S. C. Amstrup, and M. Ben-David. 2019. Heightened Immune System Function in Polar Bears Using Terrestrial Habitats. Physiological and Biochemical Zoology 92:1-11. https://doi.org/10.1086/698996.

  • Kvile, K., C. Ashjian, Z. Feng, J. Zhang, and R. Ji, Pushing the limit: Resilience of an Arctic copepod to environmental fluctuations. Glob Change Biol. 2018; 24:5426-5439. https://doi.org/10.1111/gcb.14419

  • Moore, G.W.K., A. Schweiger, J. Zhang, and M. Steele, What caused the remarkable February 2018 North Greenland Polynya? Geophys. Res. Lett., 45, https://doi.org/10.1029/2018GL080902, 2018.

  • King, M. D., Howat, I. M., Jeong, S., Noh, M. J., Wouters, B., Noël, B., and van den Broeke, M. R.: Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet,The Cryosphere, 12, 3813-3825, (2018). https://doi.org/10.5194/tc-12-3813-2018

ABOUT PSC