Archive for the «Publications» Category

  • Nawaz, A., J. Chung, S. Soelberg, D. Burnett, J. Kucewicz, and M. Steele, Small, Low Power Salinity Sensors Based on Solid State Potentiometry for Ocean Applications. OCEANS 2023 – MTS/IEEE U.S. Gulf Coast, doi:10.23919/oceans52994.2023.10336959, non-reviewed, 2023.

  • Ni Z, Arevalo R Jr, Bardyn A, Willhite L, Ray S, Southard A, Danell R, Graham J, Li X, Chou L, Briois C, Thirkell L, Makarov A, Brinckerhoff W, Eigenbrode J, Junge K, Nunn BL. (2023). Detection of Short Peptides as Putative Biosignatures of Psychrophiles via Laser Desorption Mass Spectrometry. Astrobiology23(6), 657-669. PubMed PMID: 37134219. https://doi.org/10.1089/ast.2022.0138. 
     
  • Buckley, E.M., Farrell, S.L., Herzfeld, U., Webster, M., Trantow, T., Baney, O.N., Duncan, K., Han, H., & M. Lawson (accepted), Observing the evolution of summer melt on multiyear sea ice with ICESat-2 and Sentinel-2, The Cryosphere, 17, 3695–3719, doi: 10.5194/tc-17-3695-2023, 2023.

  • Castro, S.L., G.A. Wick, S. Eastwood, M. Steele, and R.T. Tonboe, Examining the consistency of sea surface temperature and sea ice concentration in Arctic satellite products, Remote Sensing. 2023; 15(11):2908, doi:10.3390/rs15112908, 2023.

  • Sledd, A., T.S. L’Ecuyer, J.E. Kay, & M. Steele, Clouds increasingly influence Arctic sea surface temperatures as CO2 rises. Geophys. Res. Lett., doi:10.1029/2023GL102850, 2023.

  • Zhang, J., W. Cheng, M. Steele, & W. Weijer, Asymmetrically stratified Beaufort Gyre: Mean state and response to decadal forcing. Geophys. Res. Lett., 50, doi:10.1029/2022GL100457, 2023.

  • Zhang, J., W. Cheng, M. Steele, & W. Weijer, Asymmetrically stratified Beaufort Gyre: Mean state and response to decadal forcing. Geophys. Res. Lett., 50, doi:10.1029/2022GL100457, 2023.

  • Hall, S.B., B. Subrahmanyam, & M. Steele, The role of the Russian Shelf in seasonal and interannual variability of Arctic sea surface salinity and freshwater content, J. Geophys. Res.: Oceans128, doi:10.1029/2022JC019247, 2023.

  • Blanchard-Wrigglesworth, E., Webster, M., Boisvert, L., Parker, C., & C. Horvat (in press), Record low SLP Arctic cyclone of January 2022: characteristics, impacts, and predictability, J. Geophys. Res. Atmos., 127, doi:10.1029/2022JD037161, 2022.

  • Parker, C., Mooney, P., Webster, M., & L. Boisvert, The influence of climate change on Arctic cyclones: recent and future, Nat. Comms., 13, 6514, doi:10.1038/s41467-022-34126-7, 2022.

  • Webster, M., & S.G. Warren (2022), Regional geoengineering using tiny glass bubbles would accelerate the loss of Arctic sea ice, Earth’s Future, 10, e2022EF002815, doi:10.1029/2022EF002815

  • Pacini, A., Pickart, R.S., Le Bras, I.A., Straneo, F., Holliday, N.P., and Spall, M.A., 2021. Cyclonic eddies in the West Greenland Boundary Current System. Journal of Physical Oceanography, 51, 2087-2102. https://doi.org/10.1175/JPO-D-20-0255.1 [doi.org]

  • Pacini, A. and Pickart, R.S., 2022. Meanders of the West Greenland Current near Cape Farewell. Deep-Sea Research I, 179, 103664. https://doi.org/10.1016/j.dsr.2021.103664 [doi.org]

  • Moore, G., Steele, M., Schweiger, A.J., Zhang, J., and Laidre, K.L., Thick and old sea ice in the Beaufort Sea during summer 2020/21 was associated with enhanced transport. Commun Earth Environ 3, 198, doi:10.1038/s43247-022-00530-6, 2022.

  • Moore, G., Steele, M., Schweiger, A.J., Zhang, J., and Laidre, K.L., Thick and old sea ice in the Beaufort Sea during summer 2020/21 was associated with enhanced transport. Commun Earth Environ 3, 198, doi:10.1038/s43247-022-00530-6, 2022.

  • Moore, G., Steele, M., Schweiger, A.J., Zhang, J., and Laidre, K.L., Thick and old sea ice in the Beaufort Sea during summer 2020/21 was associated with enhanced transport. Commun Earth Environ 3, 198, doi:10.1038/s43247-022-00530-6, 2022.

  • Moore, G., Steele, M., Schweiger, A.J., Zhang, J., and Laidre, K.L., Thick and old sea ice in the Beaufort Sea during summer 2020/21 was associated with enhanced transport. Commun Earth Environ 3, 198, doi:10.1038/s43247-022-00530-6, 2022.

  • Light, B., Smith, M.M., Perovich, D.K., Webster, M., Holland, M., Linhardt, F., Raphael, I.A., Clemens-Sewall, D., MacFarlane, A., Anhaus, P., & D. Bailey (2022), Arctic sea ice albedo: spectral composition, spatial heterogeneity, and temporal evolution observed during the MOSAiC drift, Elementa: Sci. of the Anthro., 10(1) doi:10.1525/elementa.2021.000103.

  • Light, B., Smith, M.M., Perovich, D.K., Webster, M., Holland, M., Linhardt, F., Raphael, I.A., Clemens-Sewall, D., MacFarlane, A., Anhaus, P., & D. Bailey (2022), Arctic sea ice albedo: spectral composition, spatial heterogeneity, and temporal evolution observed during the MOSAiC drift, Elementa: Sci. of the Anthro., 10(1) doi:10.1525/elementa.2021.000103.

  • Optimized Compton fitting and modeling for light element determination in micro-X-ray fluorescence map datasets

    O’Neil, L.P., D.C. Cating, and W.T. Elam, “Optimized Compton fitting and modeling for light element determination in micro-X-ray fluorescence map datasets,” Nucl. Instrum. Methods Phys. Res., Sect. B, 436, 173-178, doi:10.1016/j.nimb.2018.09.023, 2018.

    The Planetary Instrument for X-ray Lithochemistry (PIXL) is an X-ray fluorescence instrument scheduled to fly to Mars on NASA’s 2020 rover (Allwood et al., 2015). It will be capable of quantifying elements with an atomic number of at least 11 using X-ray fluorescence (XRF), but the detector window blocks fluorescence from lighter elements. Important elements otherwise invisible include carbon, oxygen, and nitrogen, which can make up anions in minerals of scientific interest. X-rays scattered by all elements can be detected, so the ratio of Compton to Rayleigh scatter may be measured and used to infer the presence of elements for which there is no detectable fluorescence. We have refined a fundamental parameters model to predict the Compton/Rayleigh ratio for any given composition that can be compared to an experimentally measured ratio. We compare with a published Monte Carlo model (Schoonjans et al., 2012) and to experimental values for a set of seven materials. Compton/Rayleigh ratios predicted by the model are in good, though imperfect, agreement with experimental measurements. A procedure for consistently computing the Compton/Rayleigh ratio from a noisy spectrum has also been developed using a variation on a common background removal method and peak fitting.

     

  • In-situ X-ray fluorescence to investigate iodide diffusion in opalinus clay: Demonstration of a novel experimental approach

    Jaquenoud, M., and 9 others including W.T. Elam, “In-situ X-ray fluorescence to investigate iodide diffusion in opalinus clay: Demonstration of a novel experimental approach,” Chemosphere, 269, doi:10.1016/j.chemosphere.2020.128674, 2021.

    During the last two decades, the Mont Terri rock laboratory has hosted an extensive experimental research campaign focusing on improving our understanding of radionuclide transport within Opalinus Clay. The latest diffusion experiment, the Diffusion and Retention experiment B (DR-B) has been designed based on an entirely different concept compared to all predecessor experiments. With its novel experimental methodology, which uses in-situ X-ray fluorescence (XRF) to monitor the progress of an iodide plume within the Opalinus Clay, this experiment enables large-scale and long-term data acquisition and provides an alternative method for the validation of previously acquired radionuclide transport parameters.

    After briefly presenting conventional experimental methodologies used for field diffusion experiments and highlighting their limitations, this paper will focus on the pioneer experimental methodology developed for the DR-B experiment and give a preview of the results it has delivered thus far.

     

  • Avoiding slush for hot-point drilling of glacier boreholes

    Hill’s, B.H., D.P. Winebrenner, W.T. Elam, and P.M.S. Kintner, “Avoiding slush for hot-point drilling of glacier boreholes,” Ann. Glaciol., 62, 166-170, doi:10.1017/a0g.2020.70, 2021.

    Water-filled boreholes in cold ice refreeze in hours to days, and prior attempts to keep them open with antifreeze resulted in a plug of slush effectively freezing the hole even faster. Thus, antifreeze as a method to stabilize hot-water boreholes has largely been abandoned. In the hot-point drilling case, no external water is added to the hole during drilling, so earlier antifreeze injection is possible while the drill continues melting downward. Here, we use a cylindrical Stefan model to explore slush formation within the parameter space representative of hot-point drilling. We find that earlier injection timing creates an opportunity to avoid slush entirely by injecting sufficient antifreeze to dissolve the hole past the drilled radius. As in the case of hot-water drilling, the alternative is to force mixing in the hole after antifreeze injection to ensure that ice refreezes onto the borehole wall instead of within the solution as slush.

     

  • Hill, V., Light, B., Steele, M., & Sybrandy, A. L., Contrasting sea-ice algae blooms in a changing Arctic documented by autonomous drifting buoys. J. Geophys. Res.: Oceans, 127, e2021JC017848, doi:10.1029/2021JC017848, 2022.

  • Smith, M.M., Albedyll, L.v., Raphael, I., Lange, B., Matero, I., Salganik, E., Webster, M., Granskog, M.A., Fong, A., Lei, R., & B. Light (2022), Quantifying false bottoms and under-ice meltwater layers beneath Arctic summer sea ice with fine-scale observations, Elementa: Sci. of the Anthro. 10(1) doi:10.1525/elementa.2021.000116.

  • Hill, V., Light, B., Steele, M., & Sybrandy, A. L., Contrasting sea-ice algae blooms in a changing Arctic documented by autonomous drifting buoys. J. Geophys. Res.: Oceans, 127, e2021JC017848, doi:10.1029/2021JC017848, 2022.

  • Smith, M.M., Albedyll, L.v., Raphael, I., Lange, B., Matero, I., Salganik, E., Webster, M., Granskog, M.A., Fong, A., Lei, R., & B. Light (2022), Quantifying false bottoms and under-ice meltwater layers beneath Arctic summer sea ice with fine-scale observations, Elementa: Sci. of the Anthro. 10(1) doi:10.1525/elementa.2021.000116.

  • Zhang, C., A. F. Levine, M. Wang, C. Gentemann, C. W. Mordy, E. D. Cokelet, P. A. Browne, Q. Yang, N. Lawrence-Slavas, C. Meinig, G. Smith, A. Chiodi, D. Zhang, P. Stabeno, W. Wang, H. Ren, K. A. Peterson, S. N. Figueroa, M. Steele, N. P. Barton, and A. Huang, Evaluation of operational forecasts at Alaskan arctic sea surface using in situ observations from saildrones, Mon. Wea. Rev., 150, 1437–1455, doi: 10.1175/MWR-D-20-0379.1, 2022.

  • Huang, Y., Taylor, P.C., Rose, F.G., Rutan, D.A., Shupe, M.A., Webster M., & M. Smith (2022), Towards a more realistic representation of surface albedo in NASA CERES satellite products: a comparison with the MOSAiC field campaign, Elementa: Sci. of the Anthro., 10, doi:10.1525/elementa.2022.00013.

  • Webster, M., Holland, M., Wright, N.C., Hendricks, S., Hutter, N., Itkin, P., Light, B., Linhardt, F., Perovich, D.K., Raphael, I.A., Smith, M.M., Albedyll, L.v., & J. Zhang (2022), Spatiotemporal evolution of melt ponds on Arctic sea ice: MOSAiC observations and model results, Elementa: Sci. of the Anthro. 10, doi:10.1525/elementa.2021.000072.

  • Webster, M., Holland, M., Wright, N.C., Hendricks, S., Hutter, N., Itkin, P., Light, B., Linhardt, F., Perovich, D.K., Raphael, I.A., Smith, M.M., Albedyll, L.v., & J. Zhang (2022), Spatiotemporal evolution of melt ponds on Arctic sea ice: MOSAiC observations and model results, Elementa: Sci. of the Anthro. 10, doi:10.1525/elementa.2021.000072.

  • Webster, M., Holland, M., Wright, N.C., Hendricks, S., Hutter, N., Itkin, P., Light, B., Linhardt, F., Perovich, D.K., Raphael, I.A., Smith, M.M., Albedyll, L.v., & J. Zhang (2022), Spatiotemporal evolution of melt ponds on Arctic sea ice: MOSAiC observations and model results, Elementa: Sci. of the Anthro. 10, doi:10.1525/elementa.2021.000072.

  • Albedyll, L.v., Hendricks, S., Grodofzig, R., Krumpen, T., Arndt, S., Belter, H.J., Birnbaum, G., Cheng, B., Hoppmann, M., Hutchings, J., Itkin, P., Lei, R., Nicolaus, M., Ricker, R., Rohde, J., Suhrhoff, M., Timofeeva, A., Watkins, D., Webster, M., & C. Haas (2022), Thermodynamic and dynamic contributions to seasonal Arctic sea ice thickness distributions from airborne observations, Elementa: Sci. of the Anthro. 10, doi:10.1525/elementa.2021.00074.

  • Webster, M., Rigor, I., & N. Wright (2022), Observing Arctic sea ice, Oceanography. 35, doi:10.5670/oceanog.2022.115.

  • Kay, J.E., DeRepentigny, P., Holland, M.M., Bailey, D.A., DuVivier, A.K., Blanchard-Wrigglesworth, E., Deser, C., Jahn, A., Singh, H.A., Smith, M.M., Webster, M., Edwards, J., Lee, S., Rodgers, K., & N.A. Rosenbloom (2022), Less surface sea ice melt in the CESM2 improves Arctic sea ice simulation with minimal non-polar climate impacts, J. of Advances in Modeling Earth Systems, 14, doi:10.1029/2021MS002679.

  • Nicolaus, M., et al., including M. Webster (2022), Overview of the MOSAiC expedition – snow and sea ice, Elementa: Sci. of the Anthro. 10, doi:10.1525/elementa.2021.000046.

  • Vazquez-Cuervo, J., S. L. Castro, M. Steele, C. Gentemann, J. Gomez-Valdes, and W. Tang, Comparison of GHRSST SST analysis in the Arctic Ocean and Alaskan coastal waters using saildrones, Remote Sens., 14, doi:10.3390/rs14030692, 2022.

  • Li, Z., Q. Ding, M. Steele, and A. Schweiger, Recent upper Arctic Ocean warming expedited by summertime atmospheric processes. Nat. Commun., 13, 362, doi:10.1038/s41467-022-28047-8, 2022.

  • Zhong, W., S.T. Cole, J. Zhang, R. Lei, and M. Steele, Increasing winter ocean-to-ice heat flux in the Beaufort Gyre region, Arctic Ocean over 2006-2018, Geophys. Res. Lett., 49, doi:10.1029/2021GL096216, 2022.

  • Zhong, W., S.T. Cole, J. Zhang, R. Lei, and M. Steele, Increasing winter ocean-to-ice heat flux in the Beaufort Gyre region, Arctic Ocean over 2006-2018, Geophys. Res. Lett., 49, doi:10.1029/2021GL096216, 2022.

  • Li, Z., Q. Ding, M. Steele, and A. Schweiger, Recent upper Arctic Ocean warming expedited by summertime atmospheric processes. Nat. Commun., 13, 362, doi:10.1038/s41467-022-28047-8, 2022.

  • Steele, M., H. Eicken, U. Bhatt, P. Bieniek, E. Blanchard-Wrigglesworth, H. Wiggins, B. Turner-Bogren, L. Hamilton, J. Little, F. Massonnet, W.N. Meier, J. Overland, M. Serreze, J. Stroeve, J. Walsh, and M. Wang, Moving sea ice prediction forward via community intercomparison, Bull. Amer. Meteorol. Soc., 102, E2226–E2228, doi:10.1175/BAMS-D-21-0159.1, 2021.

  • Tang, W., S. H. Yueh, A. G. Fore, A. Hayashi, and M. Steele, An Empirical Algorithm for Mitigating the Sea Ice Effect in SMAP Radiometer for Sea Surface Salinity Retrieval in the Arctic Seas, IEEE J. of Selected Topics in Appl. Earth Obs. Remote Sens., 14, 11986-11997, doi:10.1109/JSTARS.2021.3127470, 2021.

  • Holland, M.M., Clemens-Sewall, D., Landrum, D., Light, B., Perovich, D., Polashenski, C., Smith, M., & M. Webster (2021), The influence of snow on sea ice as assessed from simulations of CESM2, The Cryosphere, doi:10.5194/tc-2021-174.

  • Holland, M.M., Clemens-Sewall, D., Landrum, D., Light, B., Perovich, D., Polashenski, C., Smith, M., & M. Webster (2021), The influence of snow on sea ice as assessed from simulations of CESM2, The Cryosphere, doi:10.5194/tc-2021-174.

  • Jensen, L. T., N. T. Lanning, C. M. Marsay, C. S. Buck, A. M. Aguilar‐Islas, R. Rember, W. M. Landing, R. M. Sherrell, and J. N. Fitzsimmons (2021), Biogeochemical cycling of colloidal trace metals in the Arctic cryosphere, Journal of Geophysical Research: Oceans, 126(8), e2021JC017394. https://doi.org/10.1029/2021JC017394

  • Schweiger, A., M. Steele, J. Zhang, G.W.K. Moore, and K. Laidre, Accelerated sea ice loss in the Wandel Sea points to a change in the Arctic’s Last Ice Area, Nature Commun. Earth Environ., 2, 122, doi:10.1038/s43247-021-00197-5, 2021.

  • Schweiger, A., M. Steele, J. Zhang, G.W.K. Moore, and K. Laidre, Accelerated sea ice loss in the Wandel Sea points to a change in the Arctic’s Last Ice Area, Nature Commun. Earth Environ., 2, 122, doi:10.1038/s43247-021-00197-5, 2021.

  • Schweiger, A., M. Steele, J. Zhang, G.W.K. Moore, and K. Laidre, Accelerated sea ice loss in the Wandel Sea points to a change in the Arctic’s Last Ice Area, Nature Commun. Earth Environ., 2, 122, doi:10.1038/s43247-021-00197-5, 2021.

  • Schweiger, A., M. Steele, J. Zhang, G.W.K. Moore, and K. Laidre, Accelerated sea ice loss in the Wandel Sea points to a change in the Arctic’s Last Ice Area, Nature Commun. Earth Environ., 2, 122, doi:10.1038/s43247-021-00197-5, 2021.

  • Belter, J., Krumpen, T., von Albedyll, L., Alekseeva, T., Frolov, S., Hendricks, S., Herber, A., Polyakov, I., Raphael, I., Ricker, R., Serovetnikov, S., Webster, M., & C. Haas (2021), Interannual variability in Transpolar Drift summer sea ice thickness and potential impact of Atlantification, The Cryosphere. doi:10.5194/tc-15-2575-2021.

ABOUT PSC