Posts Tagged «Jinlun Zhang»

Nazarenko, L. and others including J. Zhang, Future climate change under RCP emission scenarios with GISS ModelE2. J. Adv. Model. Earth Syst., 7, 244-267, doi:10.1002/2014MS000403, 2015.

Increasing summer ice melt in the Arctic Ocean could shift global weather patterns and make polar waters more navigable. But scientists say forecasting Arctic ice and weather remains a massive challenge. The prospect of more ice-free water during Arctic Ocean summers has triggered efforts to improve ice and weather forecasts at the top of the world

Download GRL manuscript:

Panteleev, G., D.A.Nechaev, A.Proshutinsky, R.Woodgate, and J.Zhang, 2010, Reconstruction and analysis of the Chukchi Sea circulation in 1990-1991, J.Geophys.Res., 115, C08023

Panteleev, G., M., Yaremchuk, O. Francis, P. J. Stabeno, T. Weingartner, and J. Zhang (2016), An inverse modeling study of circulation in the Eastern Bering Sea during 2007–2010, J. Geophys. Res. Oceans, 121,3970–3989, doi:10.1002/2015JC011287.

Peralta-Ferriz, C., J.  H. Morison, J. M. Wallace and J. Zhang, (2011), A basin-coherent mode of sub-monthly variability in Arctic Ocean bottom pressure, Geophys. Res. Lett, 38, L14606, doi:10.1029/2011GL048142.

Peralta‐Ferriz, C., J.H. Morison, J.M. Wallace, J.A. Bonin, and J. Zhang, Arctic Ocean circulation patterns revealed by GRACE, J. Climate, 27, 1445-1468, doi:10.1175/JCLI-D-13-00013.1, 2014.

We propose a study of the historical, contemporary, and future changes of the Chukchi and Beaufort marine planktonic ecosystem in response to changes in the sea ice cover and the upper ocean physics. Our scientific objectives are to:1) Synthesize the historical evolution of the biology-ice-ocean system in the Chukchi and Beaufort seas from 1978 to the present through modeling and analyses of satellite and in situ observations; quantify and understand the large-scale changes that have occurred in the sea ice, upper ocean, and marine planktonic ecosystem over the shelves and the basin.2) Identify key linkages and interactions between the sea…

Popova, E. E., A. Yool, A. C. Coward, F. Dupont, C. Deal, S. Elliott, E. Hunke, M. Jin, M. Steele, J. Zhang, What controls primary production in the Arctic Ocean? Results from an ecosystem model intercomparison, J. Geophys. Res., 117, doi:10.1029/2011JC007112, 2012.

Significant changes in arctic climate have been detected in recent years. One of the most striking changes is the decline of sea ice concurrent with changes in atmospheric circulation and increased surface air temperature.

Proshutinsky, A., M. Steele, J. Zhang, G. Holloway, N. Steiner, S. Hakkinen, D. Holland, R. Gerdes, C. Koeberle, M. Karcher, M. Johnson, W. Maslowski, Y. Zhang, W. Hilber, and J. Wang,’ Multinational effort studies differences among Arctic Ocean models’, Eos Trans. AGU, 82, 643-644, 2001.

Proshutinsky, A. et al. including M. Steele and J. Zhang, “Arctic Ocean study: Synthesis of model results and observations”, EOS, 40(4), 2005.

Proshutinsky, A., I. Ashik, S. Hakkinen, E. Hunke, R. Krishfield, M. Maltrud, W. Maslowski, and J. Zhang,’ Sea level variability in the Arctic Ocean from AOMIP models’, J. Geophys Res., 112, C04S08, doi:10.1029/2006JC003916, 2007.

Rawlins, M. A., M. Steele, M. C. Serreze, C. J. Vorosmarty, W. Ermold, R. B. Lammers, K. C. McDonald, T. M. Pavelsky, A. Shilomanov, and J. Zhang, “Tracing freshwater anomalies through the air-land-ocean system: A case study from the Mackenzie River Basin and the Beaufort Gyre”, Atmos. Ocean, 47(1), 79–97, doi:10.3137/OC301, 2009.

PI: Jinlun ZhangTremendous amounts of in situ and satellite data have been collected for the eastern Bering sea since 2007 in the framework of the Bering Sea Ecosystem STudy (BEST) and the Bering Sea Integrated Ecosystem Research Program (BSIERP) funded by the National Science Foundation (NSF) and the North Pacific Research Board. The rich collection of BEST-BSIERP observations and other sources of data provide an excellent opportunity for synthesis through modeling and data assimilation to improve understanding of changes in the physical forcings of the Bering ecosystem in response to climate change.This project will include the following three major goals.…

Rothrock, D.A., J. Zhang, and Y. Yu, “The arctic ice thickness anomaly of the 1990s: A consistent view from observations and models“, J. Geophys. Res., 108, 10.1029/2001JC001208, 2003.

Rothrock, D.A., and J. Zhang, “Arctic Ocean sea ice volume: What explains its recent depletion?”, J. Geophys. Res., 110, C01002, doi:10.1029/2004JC002282, 2005.

Schmidt, G.A. and others including J. Zhang, Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive, J. Adv. Model. Earth Syst., 6, no. 2, 141-184, doi:10.1002/2013MS000265, 2014.

Schweiger, A. J., and J. Zhang (2015), Accuracy of short-term sea ice drift forecasts using a coupled ice-ocean model, Journal of Geophysical Research: Oceans, doi: 10.1002/2015jc011273.

Schweiger, A., R. Lindsay, J. Zhang, M. Steele, H. Stern, Uncertainty in modeled arctic sea ice volume, J. Geophys. Res., doi:10.1029/2011JC007084, 2011

Schweiger, A.J., J. Zhang, R.W. Lindsay, and M. Steele, “Did unusually sunny skies help drive the record sea ice minimum of 2007?”, Geophys. Res. Lett, 35, 10, 6, doi: L10503,10.1029/2008gl033463, 2008b.

Schweiger, A.J., K.R. Wood, and J. Zhang, 2019: Arctic Sea Ice Volume Variability over 1901–2010: A Model-Based Reconstruction. J. of Climate, 32, 4731-4752,

Project investigators aim to improve upon the existing seasonal ensemble forecasting system and use the system to predict sea ice conditions in the arctic and subarctic seas with lead times ranging from two weeks to three seasons.

This project is motivated by recent findings showing the sensitivity of Arctic Ocean circulation to background deep-ocean diapycnal mixing. Mixing in the stratified ocean is related to internal wave energy, which tends to be low under the Arctic Ocean ice cover. Consequently, as ice cover declines background mixing may increase and, among other changes, bring more Atlantic Water heat to the surface to melt ice, a potentially important positive climate feedback. To understand the influence of background mixing and to improve models of the changing Arctic Ocean, we are taking advantage of the latest analysis techniques to examine existing internal…

Serreze, M. C., A. P. Barrett, A. J. Slater, M. Steele, J. Zhang and K. Trenberth,’ The large-scale energy budget of the arctic’, ”J. Geophys. Res., 112, D11122, doi:10.1029/2006JD008230, 2007.

August 13, 2019 – The Economist covers research by Axel Schweiger and Jinlun Zhang in collaboration with Kevin Wood at JISAO. Reconstruction of sea ice thickness and volume since 1901 uses logs from old US revenue cutters traveling in the Arctic in the early 20th century.

Steele, M., J. Zhang, D.A. Rothrock, and H. Stern: The force balance of sea ice in a numerical model of the Arctic Ocean, J. Geophys. Res., 102, 21061-21079, 1997.

Steele, M., W. Ermold, S. Häkkinen, D. Holland, G. Holloway, M. Karcher, F. Kauker, W. Maslowski, N. Steiner, and J. Zhang,’ Adrift in the Beaufort Gyre: A model intercomparison’, Geophys. Res. Lett., 28, 2935-2938, 2001.

Steele, M., A. Porcelli, and J. Zhang, Origins of the SHEBA freshwater anomaly in the Mackenzie River delta, Geophys. Res. Lett., 33, L09601, doi:10.1029/2005GL024813, 2006.

Steele, M., W. Ermold, and J. Zhang,’ Arctic Ocean surface warming trends over the past 100 years’, Geophys. Res. Lett., 35, L02614, doi:10.1029/2007GL031651, 2008.

Steele, M., J. Zhang, and W. Ermold, Mechanisms of summertime upper Arctic Ocean warming and the effect on sea ice melt, J. Geophys. Res., 115, C11004, doi:10.1029/2009JC005849, 2010.

Steele, M., W. Ermold, and J. Zhang, Modeling the formation and fate of the near-surface temperature maximum in the Canadian Basin of the Arctic Ocean, J. Geophys. Res., 116, C11015, doi:10.1029/2010JC006803, 2011.

Steele, M., S. Dickinson, J. Zhang, and R.W. Lindsay, Seasonal ice loss in the Beaufort Sea: Toward synchrony and prediction, J. Geophy. Res., 120, 1118-1132, doi: 10.1002/2014JC010247, 2015.

Steiner, N., G. Holloway, R. Gerdes, S. Hakkinen, D. Holland, M. Karcher, F. Kauker, W. Maslowski, A. Proshutinsky, M. Steele, and J. Zhang, “Comparing modeled stream function, heat and freshwater content in the Arctic Ocean“, Ocean Modelling, 6, 265-284, 2004.

Stern, H., A. Schweiger, J. Zhang, and M. Steele, On reconciling disparate studies of the sea-ice floe size distribution, Elementa, 6: 49. DOI:, 2018.

Stern HL, Schweiger AJ, Stark M, Zhang J, Steele M, Hwang B. Seasonal evolution of the sea-ice floe size distribution in the Beaufort and Chukchi seas. Elem Sci Anth. 2018;6(1):48,

A new modeling study conducted by Dr. Jinlun Zhang to be published in the Journal of Climate shows that stronger polar winds lead to an increase in Antarctic sea ice, even in a warming climate.

The AOMIP science goals are to validate and improve Arctic Ocean models in a coordinated fashion and investigate variability of the Arctic Ocean and sea ice at seasonal to decadal time scales, and identify mechanisms responsible for the observed changes.

PI: Mike Steele; Co-I Ron Lindsay, Axel Schweiger, Jinlun Zhang The main objective of this study is to determine the fate of solar energy absorbed by the arctic seas during summer, with a specific focus on its impact on the sea ice pack. Investigators further seek to understand the fate of this heat during the winter and even beyond to the following summer.

Uotila, P., D.M. Holland, M.A. Morales Maqueda, S. Hakkinen, G. Holloway, M. Karcher, M. Steele, N. Yakovlev, J. Zhang, A. Proshutinsky, “An energy-diagnostics intercomparison of coupled ice-ocean Arctic models“, Ocean Modeling, 11, 1–27, 2005.

This project will investigate, through modeling and data assimilation, the historical evolution of the Antarctic sea ice–ocean system from 1979 to the present to enhance our understanding of the large-scale changes that have occurred in the sea ice and the upper ocean in response to changes in atmospheric circulation.

Wang, J., J. Zhang, E. Watanabe, M. Ikeda, K. Mizobata, J.E. Walsh, X. Bai, and B. Wu,’ Is the dipole anomaly a major driver to record lows in arctic summer sea ice extent?’, Geophys. Res. Lett., 36, doi:10.1029/2008GL036706, 2009.

Wang, J., H. Eicken, Y. Yu, X. Bai, J. Zhang, H. Hu, D-R. Wang, M. Ikeda, K. Mizobata, and J. Overland,  Abrupt climate changes and emerging ice-ocean processes in the Pacific Arctic region and the Bering Sea, Chapter 4, in The Pacific Arctic Region: Ecosystem Status and Trends in a Rapidly Changing Environment, J. M. Grebmeier and W. Maslowski (eds.), doi 10.1007/978-94-017-8863-2_4, 2014.

Yang, Q., Mu, L., Wu, X., Liu, J., Zheng, F., Zhang, J., Li, C., 2019. Improving Arctic sea ice seasonal outlook by ensemble prediction using an ice-ocean model. Atmospheric Research, 227, pp. 14-23.

Yu, Y., D.A. Rothrock, and J. Zhang: Thin ice impacts on surface salt flux and ice strength: Inferences from advanced very high resolution radiometer, J. Geophys. Res., 106, 13,975-13,988, 2001.

Yu, Y., D.A. Rothrock, and J. Zhang, “This ice impacts on surface salt flux and ice strength: Inferences from advanced very high resolution radiometer“, J. Geophys. Res.,106, 13,975-13,988, 2001.

Zhang, J. and W.D. Hibler: On an efficient numerical method for modeling sea ice dynamics, J. Geophys. Res., 102, 8691-8702, 1997.

Zhang, J., R. Lindsay, A. Schweiger, and M. Steele, The impact of an intense summer cyclone on 2012 Arctic sea ice retreat, Geophys. Res. Lett, 40, doi: 10.1002/grl.50190, 2013.

Zhang, J., D.A. Rothrock, and M. Steele: Warming of the Arctic Ocean by a strengthened Atlantic inflow: Model results, Geophys. Res. Letters, 25, 1745-1748, 1998.